Quasirandom Quantum Channels

Mixing (or quasirandom) properties of the natural transition matrix associated to a graph can be quantified by its distance to the complete graph. Different mixing properties correspond to different norms to measure this distance. For dense graphs, two such properties known as spectral expansion and uniformity were shown to be equivalent in seminal 1989 work of Chung, Graham and Wilson. Recently, Conlon and Zhao extended this equivalence to the case of sparse vertex transitive graphs using the famous Grothendieck inequality. Here we generalize these results to the non-commutative, or ‘quantum’, case, where a transition matrix becomes a quantum channel. In particular, we show that for irreducibly covariant quantum channels, expansion is equivalent to a natural analog of uniformity for graphs, generalizing the result of Conlon and Zhao. Moreover, we show that in these results, the non-commutative and commutative (resp.) Grothendieck inequalities yield the best-possible constants.

[1]  U. Haagerup A new upper bound for the complex Grothendieck constant , 1987 .

[2]  Carlos Palazuelos,et al.  Rank-one quantum games , 2011, computational complexity.

[3]  M. B. Hastings,et al.  Random unitaries give quantum expanders , 2007, 0706.0556.

[4]  Amnon Ta-Shma,et al.  Quantum Expanders: Motivation and Construction , 2010, Theory Comput..

[5]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[6]  Aram Wettroth Harrow,et al.  Quantum expanders from any classical Cayley graph expander , 2007, Quantum Inf. Comput..

[7]  Mark Braverman,et al.  THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND , 2013, Forum of Mathematics, Pi.

[8]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[9]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[10]  G. Pisier Grothendieck's Theorem, past and present , 2011, 1101.4195.

[11]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[12]  D. Conlon,et al.  Quasirandom Cayley graphs , 2016, 1603.03025.

[13]  Béla Bollobás,et al.  Hermitian matrices and graphs: singular values and discrepancy , 2004, Discret. Math..

[14]  Fan Chung Graham,et al.  Sparse Quasi-Random Graphs , 2002, Comb..

[15]  Alexander S. Holevo,et al.  The additivity problem in quantum information theory , 2006 .

[16]  Thomas Vidick,et al.  Quantum XOR Games , 2013, Computational Complexity Conference.

[17]  A. Naor,et al.  Efficient rounding for the noncommutative Grothendieck inequality , 2012, 1210.7656.

[18]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[19]  Andris Ambainis,et al.  Small Pseudo-random Families of Matrices: Derandomizing Approximate Quantum Encryption , 2004, APPROX-RANDOM.

[20]  A. Lubotzky,et al.  Ramanujan graphs , 2017, Comb..

[21]  V. Rödl,et al.  Discrepancy and eigenvalues of Cayley graphs , 2016, 1602.02291.

[22]  Guillaume Aubrun On Almost Randomizing Channels with a Short Kraus Decomposition , 2008, 0805.2900.

[23]  A. Holevo Remarks on the classical capacity of quantum channel , 2002, quant-ph/0212025.

[24]  B. Simon Representations of finite and compact groups , 1995 .

[25]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[26]  Matthew B. Hastings,et al.  Classical and quantum tensor product expanders , 2008, Quantum Inf. Comput..

[27]  H. Buhrman,et al.  Grothendieck inequalities , nonlocal games and optimization , 2011 .

[28]  Uffe Haagerup,et al.  The Grothendieck inequality for bilinear forms on C∗-algebras , 1985 .