Regional characteristics and influencing factors of seasonal vertical crustal motions in Yunnan, China

[1]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[2]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[3]  H. Dragert,et al.  Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip , 2003, Science.

[4]  Xiaoping Yang,et al.  Basic characteristics of active tectonics of China , 2003, Science in China Series D Earth Sciences.

[5]  Hiroshi Munekane,et al.  Groundwater‐induced vertical movements observed in Tsukuba, Japan , 2004 .

[6]  Pedro Elosegui,et al.  Climate‐driven deformation of the solid Earth from GRACE and GPS , 2004 .

[7]  Peter Steigenberger,et al.  Vertical deformations from homogeneously processed GRACE and global GPS long-term series , 2011 .

[8]  Zuheir Altamimi,et al.  Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters , 2011, Journal of Geodesy.

[9]  Felix W. Landerer,et al.  Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion , 2014 .

[10]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[11]  J. Genrich,et al.  Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure , 2011 .

[12]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[13]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[14]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[15]  U. Hugentobler,et al.  Reducing the draconitic errors in GNSS geodetic products , 2014, Journal of Geodesy.

[16]  Xavier Collilieux,et al.  Impact of loading effects on determination of the International Terrestrial Reference Frame , 2010 .

[17]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[18]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[19]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[20]  R. Bendick,et al.  Monsoonal loading in Ethiopia and Eritrea from vertical GPS displacement time series , 2015 .

[21]  E. Small,et al.  Terrestrial water storage response to the 2012 drought estimated from GPS vertical position anomalies , 2014 .

[22]  M. Zhong,et al.  Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes , 2009 .

[23]  Geoffrey Blewitt,et al.  Crustal displacements due to continental water loading , 2001 .

[24]  J. Freymueller,et al.  Seasonal hydrological loading in southern Alaska observed by GPS and GRACE , 2012 .

[25]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[26]  Paul Tregoning,et al.  Atmospheric effects and spurious signals in GPS analyses , 2009 .

[27]  Yehuda Bock,et al.  Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake , 1997 .

[28]  Yunfeng Tian,et al.  iGPS: IDL tool package for GPS position time series analysis , 2011, GPS Solutions.

[29]  Jeffrey T. Freymueller,et al.  Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data , 2016 .

[30]  Xavier Collilieux,et al.  Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models , 2012 .

[31]  Jim R. Ray,et al.  Sub-daily alias and draconitic errors in the IGS orbits , 2011, GPS Solutions.

[32]  U. Schärer,et al.  The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China , 1990, Nature.

[33]  Y. Bock,et al.  Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series , 2006 .

[34]  C. K. Shum,et al.  Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data , 2014, Sensors.

[35]  Peizhen Zhang A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau , 2013 .

[36]  R. Nikolaidis Observation of geodetic and seismic deformation with the Global Positioning System , 2002 .

[37]  Peter J. Clarke,et al.  Subdaily signals in GPS observations and their effect at semiannual and annual periods , 2008 .

[38]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[39]  Peng Xiaofen,et al.  Comparison of spatial interpolation mimic method for the mean annual precipitation in Yunnan Province. , 2010 .

[40]  T. van Dam,et al.  Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements , 1987 .

[41]  Yehuda Bock,et al.  Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis , 2006 .

[42]  Simon D. P. Williams,et al.  Non‐tidal ocean loading effects on geodetic GPS heights , 2011 .

[43]  Peter Steigenberger,et al.  Impact of higher‐order ionospheric terms on GPS estimates , 2005 .

[44]  Kaihua Ding,et al.  Evaluating seasonal loading models and their impact on global and regional reference frame alignment , 2014 .

[45]  Hua Liao,et al.  Preliminary results pertaining to coseismic displacement and preseismic strain accumulation of the Lushan MS7.0 earthquake, as reflected by GPS surveying , 2013 .

[46]  Benjamin F. Chao,et al.  Analysis of tidal signals in surface displacement measured by a dense continuous GPS array , 2012 .

[47]  Jeffrey T. Freymueller,et al.  Seasonal Position Variations and Regional Reference Frame Realization , 2009 .

[48]  Zhao Li,et al.  Comparative analysis of different environmental loading methods and their impacts on the GPS height time series , 2013, Journal of Geodesy.

[49]  F. Sigmundsson,et al.  Constraints on seasonal load variations and regional rigidity from continuous GPS measurements in Iceland, 1997–2014 , 2016 .

[50]  M. Heflin,et al.  Atmospheric pressure loading effects on Global Positioning System coordinate determinations , 1994 .

[51]  Peter Molnar,et al.  Active faulting and tectonics in China , 1977 .

[52]  Wu Chen,et al.  Crustal vertical deformation response to different spatial scales of GRACE and GCMs surface loading , 2016 .

[53]  Y. Bock,et al.  Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005 , 2007 .

[54]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[55]  Tongqing Wang,et al.  Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS , 2016 .

[56]  J. Wahr,et al.  A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe , 2007 .

[57]  Hiroshi Munekane,et al.  A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning , 2005 .

[58]  M. Watkins,et al.  The status and future prospect for GRACE after the first decade , 2013 .

[59]  Xiaoli Ding,et al.  Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network , 2009 .

[60]  Robert W. King,et al.  Estimating regional deformation from a combination of space and terrestrial geodetic data , 1998 .

[61]  Jürgen Kusche,et al.  Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data , 2005 .