Reconsidering No-Go Theorems from a Practical Perspective

I argue that our judgements regarding the locally causal models that are compatible with a given constraint implicitly depend, in part, on the context of inquiry. It follows from this that certain quantum no-go theorems, which are particularly striking in the traditional foundational context, have no force when the context switches to a discussion of the physical systems we are capable of building with the aim of classically reproducing quantum statistics. I close with a general discussion of the possible implications of this for our understanding of the limits of classical description, and for our understanding of the fundamental aim of physical investigation. 1 Introduction 2 No-Go Results   2.1 The CHSH inequality   2.2 The GHZ equality 3 Classically Simulating Quantum Statistics   3.1 GHZ statistics   3.2 Singlet statistics 4 What Is a Classical Computer Simulation? 5 Comparing the All-or-Nothing GHZ with Statistical (In)equalities 6 General Discussion 7 Conclusion 1 Introduction 2 No-Go Results   2.1 The CHSH inequality   2.2 The GHZ equality   2.1 The CHSH inequality   2.2 The GHZ equality 3 Classically Simulating Quantum Statistics   3.1 GHZ statistics   3.2 Singlet statistics   3.1 GHZ statistics   3.2 Singlet statistics 4 What Is a Classical Computer Simulation? 5 Comparing the All-or-Nothing GHZ with Statistical (In)equalities 6 General Discussion 7 Conclusion

[1]  O. Lombardi,et al.  A Pluralist View about Information , 2015, Philosophy of Science.

[2]  Tracey E. Tessier,et al.  Complementarity and Entanglement in Quantum Information Theory , 2004 .

[3]  Alisa Bokulich,et al.  Philosophy of Quantum Information and Entanglement , 2010 .

[4]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[5]  J. Bell BERTLMANN'S SOCKS AND THE NATURE OF REALITY , 1981 .

[6]  D. Bacon,et al.  Communication cost of simulating Bell correlations. , 2003, Physical review letters.

[7]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Nicolas Gisin,et al.  Entangled states cannot be classically simulated in generalized Bell experiments with quantum inputs , 2013 .

[9]  I. Pitowsky,et al.  Probability and Nonlocality in Many Minds Interpretations of Quantum Mechanics , 2001, The British Journal for the Philosophy of Science.

[10]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[11]  J. Bell La nouvelle cuisine , 1990 .

[12]  J. S. BELLt,et al.  The Einstein-Podolsky-Rosen paradox , 1974, Synthese.

[13]  C. Timpson Quantum Information Theory and the Foundations of Quantum Mechanics , 2004, quant-ph/0412063.

[14]  Michael E. Cuffaro On the Significance of the Gottesman–Knill Theorem , 2013, The British Journal for the Philosophy of Science.

[15]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[16]  Itamar Pitowsky Quantum Speed‐up of Computations , 2002, Philosophy of Science.

[17]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[18]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[19]  N. Mermin Whats Wrong with those Epochs , 1990 .

[20]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[21]  J. Bub Why the quantum , 2004, quant-ph/0402149.

[22]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[23]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: La nouvelle cuisine , 2004 .

[24]  James T. Cushing,et al.  Philoophical Consequences of Quantum Theory , 1989 .

[25]  Tim Maudlin,et al.  Quantum non-locality and relativity , 1994 .

[26]  W. Myrvold From Physics to Information Theory and Back , 2008 .

[27]  N. Mermin What's Wrong with these Elements of Reality? , 1990 .

[28]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[29]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[30]  M. Redhead,et al.  Generalization of the Greenberger-Horne-Zeilinger algebraic proof of nonlocality , 1991 .

[31]  Alastair A. Abbott The Deutsch–Jozsa problem: de-quantisation and entanglement , 2011, Natural Computing.

[32]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[33]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[34]  R. Landauer The physical nature of information , 1996 .

[35]  Itamar Pitowsky,et al.  Laplace's demon consults an oracle: The computational complexity of prediction , 1996 .

[36]  L. Vaidman Variations on the Theme of the Greenberger-Horne-Zeilinger Proof , 1998 .

[37]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[38]  Optimal classical-communication-assisted local model of n-qubit Greenberger-Horne-Zeilinger correlations , 2005, quant-ph/0503047.

[39]  J E Thomas,et al.  Experimental simulation of two-particle quantum entanglement using classical fields. , 2002, Physical review letters.

[40]  A. Kent Causal quantum theory and the collapse locality loophole (7 pages) , 2002, quant-ph/0204104.

[41]  I. Pitowsky,et al.  The Physical Church Thesis and Physical Computational Complexity , 2013 .

[42]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: On the Einstein–Podolsky–Rosen paradox , 2004 .

[43]  T. Maudlin Quantum non-locality and relativity : metaphysical intimations of modern physics , 1996 .

[44]  C. Borges,et al.  Bell-like inequality for the spin-orbit separability of a laser beam , 2009, 0911.2440.

[45]  J. Bell,et al.  BERTLMANN'S SOCKS AND THE NATURE OF REALITY , 1981 .

[46]  Bernadette Bensaude‐Vincent The Chemists' Style of Thinking , 2009, Berichte zur Wissenschaftsgeschichte.