Synthetic aperture inversion for arbitrary flight paths and nonflat topography

This paper considers synthetic aperture radar (SAR) and other synthetic aperture imaging systems in which a backscattered wave is measured from positions along an arbitrary (known) flight path. The received backscattered signals are used to produce an image of the terrain. We assume a single-scattering model for the radar data, and we assume that the ground topography is known but not necessarily flat. We focus on cases in which the antenna footprint is so large that the standard narrow-beam algorithms are not useful. We show that certain artifacts can be avoided if the antenna and antenna footprint avoid particular relationships with the ground topography. We give an explicit backprojection imaging algorithm that corrects for the ground topography, flight path, antenna beam pattern, source waveform, and other geometrical factors. For the case of a non-directional antenna, the image produced by the above algorithm contains artifacts. For this case, we analyze the strength of the artifacts relative to the strength of the true image. The analysis shows that the artifacts can be somewhat suppressed by increasing the frequency, integration time, and the curvature of the flight path.

[1]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[2]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[3]  Mehrdad Soumekh,et al.  Signal processing of wide bandwidth and wide beamwidth P-3 SAR data , 2001 .

[4]  Lars M. H. Ulander,et al.  Development of VHF CARABAS II SAR , 1996, Defense, Security, and Sensing.

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Clifford J. Nolan Scattering in the Presence of Fold Caustics , 2000, SIAM J. Appl. Math..

[7]  Lars M. H. Ulander,et al.  Ultra-wideband SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[8]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[9]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[10]  H Hellsten,et al.  An inverse method for the processing of synthetic aperture radar data , 1986 .

[11]  A. Milman SAR imaging by ?? migration , 1993 .

[12]  D. Wehner High Resolution Radar , 1987 .

[13]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[14]  Riccardo Lanari,et al.  Synthetic Aperture Radar Processing , 1999 .

[15]  B. C. Barber,et al.  Theory of Digital Imaging from Orbital Synthetic Aperture Radar , 1983 .

[16]  D. Mensa High Resolution Radar Cross-Section Imaging , 1991 .

[17]  Charles W. Therrien,et al.  Discrete Random Signals and Statistical Signal Processing , 1992 .

[18]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[19]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[20]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[21]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[22]  John A. Fawcett,et al.  Inversion of N-dimensional spherical averages , 1985 .

[23]  L. Hörmander Fourier integral operators. I , 1995 .

[24]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[25]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[26]  F. Rocca,et al.  SAR data focusing using seismic migration techniques , 1991 .

[27]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[28]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[29]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[30]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[31]  James G. Berryman,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Interdisciplinary Applied Mathematics, Vol 13 , 2001 .

[32]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[33]  Lars M. H. Ulander,et al.  Low-frequency ultrawideband array-antenna SAR for stationary and moving target imaging , 1999, Defense, Security, and Sensing.

[34]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .

[35]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[36]  L. Andersson On the determination of a function from spherical averages , 1988 .

[37]  Mehrdad Soumekh Wavefront-Based Synthetic Aperture Radar Signal Processing , 2001 .

[38]  E. N. Leith,et al.  On the application of coherent optical processing techniques to synthetic-aperture radar , 1966 .

[39]  Eric Michielssen,et al.  Pareto genetic algorithm based optimization of log-periodic monopole arrays mounted on realistic platforms , 1999 .

[40]  François Treves Linear Partial Differential Equations , 1970 .

[41]  F. Trèves Basic Linear Partial Differential Equations , 1975 .

[42]  N. Kodaira Synthetic Aperture Radar (SAR), Part 3 , 1995 .

[43]  D. Vassiliev,et al.  MICROLOCAL ANALYSIS FOR DIFFERENTIAL OPERATORS—AN INTRODUCTION (London Mathematical Society Lecture Note Series 196) , 1996 .