A mixed finite element method for beam and frame problems

[1]  A. S. Elnashai Finite elements and solution procedures for structural analysis—Vol 1. linear analysis: By M.A. Crisfield. 1986. Pineridge Press, UK. 272 pp. Price £22·00, hardback. (ISBN 0-906674-53-0) , 1987 .

[2]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[3]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[4]  Jan Bäcklund,et al.  Large deflection analysis of elasto-plastic beams and frames , 1976 .

[5]  Stephen A. Mahin,et al.  Refined modeling of reinforced concrete columns of seismic analysis , 1984 .

[6]  Stephen A. Mahin,et al.  Analysis of Reinforced Concrete Beam-Columns under Uniaxial Excitation , 1988 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  R. M. Souza Force-based Finite Element for Large Displacement Inelastic Analysis of Frames , 2000 .

[9]  Ashraf Ayoub,et al.  MIXED FORMULATION OF NONLINEAR STEEL-CONCRETE COMPOSITE BEAM ELEMENT , 2000 .

[10]  V. Ciampi,et al.  EQUILIBRIUM BASED ITERATIVE SOLUTIONS FOR THE NON-LINEAR BEAM PROBLEM , 1997 .

[11]  Satya N. Atluri,et al.  ELASTO-PLASTIC LARGE DEFORMATION ANALYSIS OF SPACE-FRAMES: A PLASTIC-HINGE AND STRESS-BASED EXPLICIT DERIVATION OF TANGENT STIFFNESSES , 1988 .

[12]  J. C. Simo,et al.  Numerical analysis and simulation of plasticity , 1998 .

[13]  F. Filippou,et al.  MIXED FORMULATION OF BOND-SLIP PROBLEMS UNDER CYCLIC LOADS , 1999 .

[14]  R. Taylor The Finite Element Method, the Basis , 2000 .

[15]  U. Galvanetto,et al.  AN ENERGY‐CONSERVING CO‐ROTATIONAL PROCEDURE FOR THE DYNAMICS OF PLANAR BEAM STRUCTURES , 1996 .

[16]  Ignacio Carol,et al.  Nonlinear time-dependent analysis of planar frames using an ‘exact’ formulation—I. Theory , 1989 .

[17]  Marco Petrangeli,et al.  Fiber Element for Cyclic Bending and Shear of RC Structures. I: Theory , 1999 .

[18]  F. Filippou,et al.  Mixed formulation of nonlinear beam finite element , 1996 .

[19]  Suchart Limkatanyu,et al.  Reinforced Concrete Frame Element with Bond Interfaces. I: Displacement-Based, Force-Based, and Mixed Formulations , 2002 .

[20]  F. Filippou,et al.  Geometrically Nonlinear Flexibility-Based Frame Finite Element , 1998 .

[21]  N. Bićanić Finite elements and solution procedures for structural analysis, vol. 1 — linear analysis, M. A. Crisfield, Pineridge Press, Swansea, 1986. No. of pages: 272. ISBN 0‐906674‐53‐0 , 1988 .

[22]  M. Crisfield,et al.  A CO-ROTATIONAL FORMULATION FOR 2-D CONTINUA INCLUDING INCOMPATIBLE MODES , 1996 .

[23]  Gordan Jelenić,et al.  Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .

[24]  Enrico Spacone,et al.  FIBRE BEAM–COLUMN MODEL FOR NON‐LINEAR ANALYSIS OF R/C FRAMES: PART I. FORMULATION , 1996 .

[25]  M. A. Crisfield,et al.  Co-Rotational Beam Elements for Two- and Three-Dimensional Non-Linear Analysis , 1990 .

[26]  J. Reddy ON LOCKING-FREE SHEAR DEFORMABLE BEAM FINITE ELEMENTS , 1997 .

[27]  S. Atluri,et al.  Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses , 1987 .

[28]  Filip C. Filippou,et al.  Evaluation of Nonlinear Frame Finite-Element Models , 1997 .

[29]  K. Bathe Finite Element Procedures , 1995 .

[30]  Keith Hjelmstad,et al.  Mixed methods and flexibility approaches for nonlinear frame analysis , 2002 .