Convex composite multi-objective nonsmooth programming

This paper examines nonsmooth constrained multi-objective optimization problems where the objective function and the constraints are compositions of convex functions, and locally Lipschitz and Gâteaux differentiable functions. Lagrangian necessary conditions, and new sufficient optimality conditions for efficient and properly efficient solutions are presented. Multi-objective duality results are given for convex composite problems which are not necessarily convex programming problems. Applications of the results to new and some special classes of nonlinear programming problems are discussed. A scalarization result and a characterization of the set of all properly efficient solutions for convex composite problems are also discussed under appropriate conditions.

[1]  D. E. Ward,et al.  General constraint qualifications in nondifferentiable programming , 1990, Math. Program..

[2]  D. White Optimality and efficiency , 1982 .

[3]  Daniel P. Giesy,et al.  Multicriteria Optimization Methods for Design of Aircraft Control Systems , 1988 .

[4]  Vaithilingam Jeyakumar Infinite-dimensional convex programming with applications to constrained approximation , 1992 .

[5]  Vaithilingam Jeyakumar,et al.  On optimality conditions in nonsmooth inequality constrained minimization , 1987 .

[6]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[7]  A. Ben-Tal,et al.  Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems , 1982, Math. Program..

[8]  T. Weir,et al.  Generalised convexity and duality in multiple objective programming , 1989, Bulletin of the Australian Mathematical Society.

[9]  J. Jahn,et al.  Applications of Multicriteria Optimization in Approximation Theory , 1988 .

[10]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[11]  Johannes Jahn,et al.  Scalarization in vector optimization , 1984, Math. Program..

[12]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 2: Conditions of Levitin–Miljutin–Osmolovskii Type , 1979 .

[13]  Vaithilingam Jeyakumar,et al.  Convexlike alternative theorems and mathematical programming , 1985 .

[14]  Eng Ung Choo,et al.  Pseudolinearity and efficiency , 1984, Math. Program..

[15]  O. Mangasarian A simple characterization of solution sets of convex programs , 1988 .

[16]  Henry Wolkowicz,et al.  Zero duality gaps in infinite-dimensional programming , 1990 .

[17]  Hirotaka Nakayama,et al.  Theory of Multiobjective Optimization , 1985 .

[18]  R. Fletcher A model algorithm for composite nondifferentiable optimization problems , 1982 .

[19]  D. J. White,et al.  Multiobjective programming and penalty functions , 1984 .

[20]  Ekkehard W. Sachs,et al.  Generalized quasiconvex mappings and vector optimization , 1986 .

[21]  G. A. Garreau,et al.  Mathematical Programming and Control Theory , 1979, Mathematical Gazette.

[22]  Roger Hartley,et al.  Vector and Parametric Programming , 1985 .

[23]  W. Stadler Multicriteria Optimization in Engineering and in the Sciences , 1988 .

[24]  Eng Ung Choo,et al.  Technical Note - Proper Efficiency and the Linear Fractional Vector Maximum Problem , 1984, Oper. Res..

[25]  James V. Burke,et al.  Second order necessary and sufficient conditions for convex composite NDO , 1987, Math. Program..

[26]  Johannes Jahn,et al.  Scalarization in Multi Objective Optimization , 1985 .

[27]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[28]  Vaithilingam Jeyakumar Composite Nonsmooth Programming with Gâteaux Differentiability , 1991, SIAM J. Optim..

[29]  R. Rockafellar First- and second-order epi-differentiability in nonlinear programming , 1988 .

[30]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[31]  R. Fletcher Practical Methods of Optimization , 1988 .

[32]  James V. Burke,et al.  Descent methods for composite nondifferentiable optimization problems , 1985, Math. Program..