Human-centric computing — The case for a Hyper-Dimensional approach

Some of most compelling application domains of the IoT and Swarm concepts relate to how humans interact with the world around it and the cyberworld beyond. While the proliferation of communication and data processing devices has profoundly altered our interaction patterns, little has been changed in the way we process inputs (sensory) and outputs (actuation). The combination of IoT (Swarms) and wearable devices offers the potential for changing all of this, opening the door for true human augmentation. The epitome of this would be a direct interface to the human brain. Yet, making sense of the plethora of information received from the often noisy sensors and making reliable decisions within very tight latency bounds (< 10 ms) typically demands huge computational workloads to be performed in wearable form factors at extreme energy efficiency. In this presentation, we will make the case why alternative non-Von Neumann computational paradigms and architectures may be the right choice for these cognitive processing tasks. Even more, we will focus on a computational model called Hyper-Dimensional Computing (HDC), and illustrate with concrete examples of why this approach may be the right one in a post-Moore data-driven arena.