Duadic negacyclic codes over a finite non-chain ring and their Gray images

Let $f(u)$ be a polynomial of degree $m, m \geq 2,$ which splits into distinct linear factors over a finite field $\mathbb{F}_{q}$. Let $\mathcal{R}=\mathbb{F}_{q}[u]/\langle f(u)\rangle$ be a finite non-chain ring. In an earlier paper, we studied duadic and triadic codes over $\mathcal{R}$ and their Gray images. Here, we study duadic negacyclic codes of Type I and Type II over the ring $\mathcal{R}$, their extensions and their Gray images. As a consequence some self-dual, isodual, self-orthogonal and complementary dual(LCD) codes over $\mathbb{F}_q$ are constructed. Some examples are also given to illustrate this.

[1]  Yun Fan,et al.  Polyadic Constacyclic Codes , 2015, IEEE Transactions on Information Theory.

[2]  Bijan Taeri QUADRATIC RESIDUE CODES OVER ℤ 9 , 2009 .

[4]  Bahattin Yildiz,et al.  New extremal binary self-dual codes of length 68 from quadratic residue codes over 𝔽2 + u𝔽2 + u2𝔽2 , 2013, Finite Fields Their Appl..

[5]  Kenza Guenda New MDS self-dual codes over finite fields , 2012, Des. Codes Cryptogr..

[6]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[7]  Yun Fan,et al.  Iso-orthogonality and Type-II duadic constacyclic codes , 2016, Finite Fields Their Appl..

[8]  Bahattin Yildiz,et al.  Quadratic Residue Codes over F_p+vF_p and their Gray Images , 2013, ArXiv.

[9]  Bahattin Yildiz,et al.  Cyclic Isodual and Formally Self-dual Codes over F_q+vF_q , 2015 .

[10]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[11]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[12]  Mokshi Goyal,et al.  (1−2u3)-constacyclic codes and quadratic residue codes over Fp[u]/〈u4−u〉$\mathbb {F}_{p}[u]/\langle u^{4}-u\rangle $ , 2017, Cryptography and Communications.

[13]  Thomas Blackford Negacyclic duadic codes , 2008, Finite Fields Their Appl..

[14]  Thomas Blackford Isodual constacyclic codes , 2013, Finite Fields Their Appl..

[15]  Stephen S.-T. Yau,et al.  Z8-Cyclic Codes and Quadratic Residue Codes , 2000, Adv. Appl. Math..

[16]  Mokshi Goyal,et al.  Quadratic residue codes over the ring 𝔽p[u]/〈 um - u 〉 and their Gray images , 2018, Cryptogr. Commun..

[17]  Mokshi Goyal,et al.  Quadratic residue codes over the ring 𝔽p[u]/〈um−u〉$\mathbb {F}_{p}[u]/\langle u^{m}-u\rangle $ and their Gray images , 2018, Cryptography and Communications.

[18]  Mokshi Goyal,et al.  Duadic and triadic codes over a finite non-chain ring and their Gray images , 2018, Int. J. Inf. Coding Theory.