Chaos Synchronization in Complex Networks

In this paper, we study chaos synchronization in complex networks with time-invariant, time-varying and switching configurations based on the matrix measure of complex matrices. To begin with, we propose an analytical condition for chaos synchronization in complex networks with a time-invariant configuration. Secondly, we obtain some less conservative synchronization conditions for networks with a time-varying configuration. Thirdly, we consider chaos synchronization in networks with time-average and switching configurations. If complex subnetworks satisfy certain conditions, the networks with time-average and switching configurations are M-synchronizable. At last, we analyze the nonsynchronizability of complex networks. Chaos synchronization in complex networks can't be realized if the coupling configuration and the inner-coupling matrix satisfy certain conditions. Theoretical analysis and numerical simulations verify the effectiveness of the proposed synchronization criteria.

[1]  G. Rangarajan,et al.  General stability analysis of synchronized dynamics in coupled systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  G. Rangarajan,et al.  Stability of synchronized chaos in coupled dynamical systems , 2002, nlin/0201037.

[3]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[4]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[5]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[6]  M. Hasler,et al.  Synchronization in asymmetrically coupled networks with node balance. , 2006, Chaos.

[7]  Tianping Chen,et al.  Synchronization of coupled connected neural networks with delays , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  B. Bollobás The evolution of random graphs , 1984 .

[10]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[11]  Chai Wah Wu Synchronization in arrays of coupled nonlinear systems: passivity circle criterion and observer design , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[12]  Donghua Zhou,et al.  Synchronization in uncertain complex networks. , 2006, Chaos.

[13]  Chai Wah Wu,et al.  Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  R. E. Amritkar,et al.  Synchronized state of coupled dynamics on time-varying networks. , 2006, Chaos.

[16]  L. Chua,et al.  Application of Kronecker products to the analysis of systems with uniform linear coupling , 1995 .

[17]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[18]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[19]  Mao-Yin Chen,et al.  Some Simple Synchronization Criteria for Complex Dynamical Networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  J. Kurths,et al.  Enhancing complex-network synchronization , 2004, cond-mat/0406207.

[21]  C-H Lai,et al.  Tailoring wavelets for chaos control. , 2002, Physical review letters.

[22]  S. Niculescu Delay Effects on Stability: A Robust Control Approach , 2001 .

[23]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[24]  R. D. Driver,et al.  Ordinary and Delay Differential Equations , 1977 .

[25]  C. Wu Synchronization in networks of nonlinear dynamical systems coupled via a directed graph , 2005 .

[26]  Tomasz Kapitaniak,et al.  Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[28]  C. Wu Synchronizability of networks of chaotic systems coupled via a graph with a prescribed degree sequence , 2005 .

[29]  Tianping Chen,et al.  Synchronization in general complex delayed dynamical networks , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Guanrong Chen,et al.  Global synchronization and asymptotic stability of complex dynamical networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  C. Wu Perturbation of coupling matrices and its effect on the synchronizability in arrays of coupled chaotic systems , 2003, nlin/0307052.

[32]  Chai Wah Wu,et al.  Synchronization in Coupled Chaotic Circuits and Systems , 2002 .

[33]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[34]  Joseph D Skufca,et al.  Communication and synchronization in, disconnected networks with dynamic topology: moving neighborhood networks. , 2004, Mathematical biosciences and engineering : MBE.

[35]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[36]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[37]  Guanrong Chen,et al.  Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint , 2003 .

[38]  C. Wu Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling , 2003 .

[39]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[40]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[41]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[42]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[43]  Xiaofan Wang,et al.  On synchronization in scale-free dynamical networks , 2005 .

[44]  J. L. Willems,et al.  Stabilität dynamischer Systeme , 1973 .

[45]  J. Jost,et al.  Spectral properties and synchronization in coupled map lattices. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .