High-Performance n-type SnSe Thermoelectric Polycrystal Prepared by Arc-Melting

[1]  Li-dong Zhao,et al.  Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium Alloying , 2019, ACS Applied Energy Materials.

[2]  Haijun Wu,et al.  Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies. , 2020, Journal of the American Chemical Society.

[3]  Jinfeng Dong,et al.  Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance , 2019, Research.

[4]  N. Nemes,et al.  Influence of Nanostructuration on PbTe Alloys Synthesized by Arc-Melting , 2019, Materials.

[5]  M. Dargusch,et al.  In-Situ Observation of the Continuous Phase Transition in Determining the High Thermoelectric Performance of Polycrystalline Sn0.98Se. , 2019, The journal of physical chemistry letters.

[6]  U. Waghmare,et al.  Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In , 2019, Joule.

[7]  Li-dong Zhao,et al.  Oxygen adsorption and its influence on the thermoelectric performance of polycrystalline SnSe , 2019, Journal of Materials Chemistry C.

[8]  J. Zou,et al.  High Porosity in Nanostructured n-Type Bi2Te3 Obtaining Ultralow Lattice Thermal Conductivity. , 2019, ACS applied materials & interfaces.

[9]  N. Nemes,et al.  Evidence of nanostructuring and reduced thermal conductivity in n-type Sb-alloyed SnSe thermoelectric polycrystals , 2019, Journal of Applied Physics.

[10]  Wenke He,et al.  Realizing High‐Ranged Out‐of‐Plane ZTs in N‐Type SnSe Crystals through Promoting Continuous Phase Transition , 2019, Advanced Energy Materials.

[11]  Y. Amouyal,et al.  Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials , 2019, Advanced Functional Materials.

[12]  Y. K. Lee,et al.  High Thermoelectric Performance in n-Type Polycrystalline SnSe via Dual Incorporation of Cl and PbSe and Dense Nanostructures. , 2019, ACS applied materials & interfaces.

[13]  Yue Chen,et al.  Lattice Strain Advances Thermoelectrics , 2019, Joule.

[14]  Y. Qiu,et al.  Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of n‐Type Polycrystalline SnSe via Re Doping , 2019, Advanced Functional Materials.

[15]  Y. Liu,et al.  Effects of temperature and pressure on the optical and vibrational properties of thermoelectric SnSe. , 2019, Physical chemistry chemical physics : PCCP.

[16]  G. J. Snyder,et al.  The Thermoelectric Properties of Bismuth Telluride , 2019, Advanced Electronic Materials.

[17]  M. Kanatzidis,et al.  Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance , 2019, Joule.

[18]  M. Chou,et al.  Thermoelectric Figure-of-Merit of Fully Dense Single-Crystalline SnSe , 2019, ACS omega.

[19]  Jun Jiang,et al.  Super Large Sn1- xSe Single Crystals with Excellent Thermoelectric Performance. , 2019, ACS Applied Materials and Interfaces.

[20]  Qiang Sun,et al.  High Thermoelectric Performance in p‐type Polycrystalline Cd‐doped SnSe Achieved by a Combination of Cation Vacancies and Localized Lattice Engineering , 2019, Advanced Energy Materials.

[21]  A. M. Rao,et al.  Phonon anharmonicity in single-crystalline SnSe , 2018, Physical Review B.

[22]  Haijun Wu,et al.  Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. , 2018, Journal of the American Chemical Society.

[23]  V. Sivakov,et al.  XPS investigations of MOCVD tin oxide thin layers on Si nanowires array , 2018, Results in Physics.

[24]  M. Kanatzidis,et al.  The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport , 2018, Chemistry of Materials.

[25]  J. Bos,et al.  Critical mode and band-gap-controlled bipolar thermoelectric properties of SnSe , 2018, Physical Review Materials.

[26]  J. Zou,et al.  High-performance SnSe thermoelectric materials: Progress and future challenge , 2018, Progress in Materials Science.

[27]  Xiaofang Li,et al.  Heavy Doping by Bromine to Improve the Thermoelectric Properties of n‐type Polycrystalline SnSe , 2018, Advanced science.

[28]  N. Nemes,et al.  Nanostructured Thermoelectric Chalcogenides , 2018, Bringing Thermoelectricity into Reality.

[29]  J. E. Lee,et al.  Thermoelectric Properties of Hot-Pressed Bi-Doped n-Type Polycrystalline SnSe , 2018, Nanoscale Research Letters.

[30]  J. Zou,et al.  Realizing High Thermoelectric Performance in n‐Type Highly Distorted Sb‐Doped SnSe Microplates via Tuning High Electron Concentration and Inducing Intensive Crystal Defects , 2018 .

[31]  A. Hernandes,et al.  Blocking effect in promising proton conductors based on Ba 3 Ca 1.18 Nb 1.82-x R x O 9-δ ( R = Y 3+ , Gd 3+ , Sm 3+ , Nd 3+ ) ordered perovskites for PC-SOFCs , 2018, Ceramics International.

[32]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[33]  Jingzhou Yin,et al.  Study on the thermoelectric performance of polycrystal SnSe with Se vacancies , 2018 .

[34]  N. Nemes,et al.  Giant microwave absorption in fine powders of superconductors , 2018, Scientific Reports.

[35]  N. Nemes,et al.  Structural evolution of a Ge-substituted SnSe thermoelectric material with low thermal conductivity , 2018 .

[36]  M. Dargusch,et al.  Realizing zT of 2.3 in Ge1−x−ySbxInyTe via Reducing the Phase‐Transition Temperature and Introducing Resonant Energy Doping , 2018, Advanced materials.

[37]  Jun Jiang,et al.  Charge Transport in Thermoelectric SnSe Single Crystals , 2018 .

[38]  X. Su,et al.  Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics , 2018 .

[39]  R. L. González-Romero,et al.  Variation of the zT factor of SnSe with doping: A first-principles study , 2018 .

[40]  Jingfeng Li,et al.  Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies. , 2018, Journal of the American Chemical Society.

[41]  Taeghwan Hyeon,et al.  Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. , 2017, Journal of the American Chemical Society.

[42]  Zhenxiang Cheng,et al.  Three‐Stage Inter‐Orthorhombic Evolution and High Thermoelectric Performance in Ag‐Doped Nanolaminar SnSe Polycrystals , 2017 .

[43]  A. Antonelli,et al.  Insights into the thermoelectric properties of SnSe from ab initio calculations. , 2017, Physical chemistry chemical physics : PCCP.

[44]  Soonil Lee,et al.  Effects of Sn-deficiency on thermoelectric properties of polycrystalline Sn 1-x Se compounds , 2017 .

[45]  Y. Shin,et al.  Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds , 2017, Scientific Reports.

[46]  Zhiwei Chen,et al.  Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides , 2017 .

[47]  Wei Wei,et al.  Rock-salt-type nanoprecipitates lead to high thermoelectric performance in undoped polycrystalline SnSe , 2017 .

[48]  N. Nemes,et al.  Structural phase transition in polycrystalline SnSe: a neutron diffraction study in correlation with thermoelectric properties , 2016 .

[49]  Youwei Du,et al.  Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn1-xPbxSe. , 2016, Journal of the American Chemical Society.

[50]  M. Kanatzidis,et al.  SnSe: a remarkable new thermoelectric material , 2016 .

[51]  J. Heremans,et al.  High-temperature oxidation behavior of thermoelectric SnSe , 2016 .

[52]  N. Nemes,et al.  Giant Seebeck effect in Ge-doped SnSe , 2016, Scientific Reports.

[53]  D. Pontiroli,et al.  Electronic and ionic conductivities in superionic Li4 C60 , 2016, 1603.01470.

[54]  C. Uher,et al.  Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals , 2016 .

[55]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[56]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[57]  F. Gil-Ortiz,et al.  The crystallography stations at the Alba synchrotron , 2015 .

[58]  Yulong Li,et al.  Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe , 2015 .

[59]  Gang Chen,et al.  Studies on Thermoelectric Properties of n‐type Polycrystalline SnSe1‐xSx by Iodine Doping , 2015 .

[60]  Baoling Huang,et al.  First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS , 2015, 1505.02601.

[61]  N. Nemes,et al.  Record Seebeck coefficient and extremely low thermal conductivity in nanostructured SnSe , 2015 .

[62]  J. Toboła,et al.  Electronic structure and thermoelectric properties of n - and p -type SnSe from first-principles calculations , 2015, 1502.04599.

[63]  G. J. Snyder,et al.  Thermoelectric properties of p-type polycrystalline SnSe doped with Ag , 2014 .

[64]  E. Kioupakis,et al.  Quasiparticle band structures and thermoelectric transport properties of p-type SnSe , 2014, 1406.1218.

[65]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[66]  J. Vaney,et al.  Assessment of the thermoelectric performance of polycrystalline p-type SnSe , 2014 .

[67]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[68]  Qi Wang,et al.  A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications , 2014 .

[69]  D. Adroja,et al.  Vibrational Dynamics of Filled Skutterudites LaT4X12 (T = Fe, Ru, Os, X = As, Sb) , 2013 .

[70]  J. Bahk,et al.  Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials , 2013 .

[71]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[72]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[73]  G. Ottaviani,et al.  Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors , 2012 .

[74]  A. Pron,et al.  Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy. , 2012, Journal of the American Chemical Society.

[75]  G. J. Snyder,et al.  Introduction to Modeling Thermoelectric Transport at High Temperatures , 2012 .

[76]  C. Klinke,et al.  Thermoelectric properties of lead chalcogenide core-shell nanostructures. , 2011, ACS nano.

[77]  G. J. Snyder,et al.  A high temperature apparatus for measurement of the Seebeck coefficient. , 2011, The Review of scientific instruments.

[78]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[79]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[80]  M. Bicer,et al.  Electrodeposition and growth mechanism of SnSe thin films , 2011 .

[81]  Y. Huttel,et al.  Influence of Thermal Ageing on Surface Degradation of Ethylene-Propylene-Diene Elastomer , 2011 .

[82]  M. Dresselhaus,et al.  Effects of nanoscale porosity on thermoelectric properties of SiGe , 2010 .

[83]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[84]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[85]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[86]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[87]  S. Faleev,et al.  Theory of enhancement of thermoelectric properties of materials with nanoinclusions , 2008, 0807.0260.

[88]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[89]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[90]  X Wang,et al.  X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films , 2000 .

[91]  G. Grüner,et al.  Microwave cavity perturbation technique: Part I: Principles , 1993 .

[92]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[93]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[94]  S. Badrinarayanan,et al.  Mechanism of high-temperature oxidation of tin selenide , 1986 .

[95]  H. R. Chandrasekhar,et al.  Infrared and Raman spectra of the IV-VI compounds SnS and SnSe , 1977 .

[96]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[97]  J. Zou,et al.  Achieving high Figure of Merit in p-type polycrystalline Sn0.98Se via self-doping and anisotropy-strengthening , 2018 .

[98]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[99]  D. Richard,et al.  Analysis and Visualisation of Neutron-Scattering Data , 1996 .