Efficiency Through Procrastination: Approximately Optimal Algorithm Configuration with Runtime Guarantees

Algorithm configuration methods have achieved much practical success, but to date have not been backed by meaningful performance guarantees. We address this gap with a new algorithm configuration framework, Structured Procrastination. With high probability and nearly as quickly as possible in the worst case, our framework finds an algorithm configuration that provably achieves near optimal performance. Further, its running time requirements asymptotically dominate those of existing methods.

[1]  Nicolò Cesa-Bianchi,et al.  Combinatorial Bandits , 2012, COLT.

[2]  Angela M. Dean,et al.  Design and analysis of experiment , 2013 .

[3]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[4]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[5]  Rémi Munos,et al.  From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning , 2014, Found. Trends Mach. Learn..

[6]  Sudipto Guha,et al.  Approximation algorithms for budgeted learning problems , 2007, STOC '07.

[7]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[8]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[9]  Kuzman Ganchev,et al.  Censored exploration and the dark pool problem , 2009, UAI.

[10]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[11]  Archie C. Chapman,et al.  Knapsack Based Optimal Policies for Budget-Limited Multi-Armed Bandits , 2012, AAAI.

[12]  Eli Upfal,et al.  Multi-Armed Bandits in Metric Spaces ∗ , 2008 .

[13]  Csaba Szepesvári,et al.  –armed Bandits , 2022 .

[14]  Kirthevasan Kandasamy,et al.  The Multi-fidelity Multi-armed Bandit , 2016, NIPS.

[15]  Robert D. Kleinberg Anytime algorithms for multi-armed bandit problems , 2006, SODA '06.

[16]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[17]  Aleksandrs Slivkins,et al.  Bandits with Knapsacks , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[18]  Yoav Freund,et al.  A Parameter-free Hedging Algorithm , 2009, NIPS.

[19]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[20]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[21]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[22]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[23]  Yuri Malitsky,et al.  Model-Based Genetic Algorithms for Algorithm Configuration , 2015, IJCAI.

[24]  Kevin Leyton-Brown,et al.  Bayesian Optimization With Censored Response Data , 2013, ArXiv.