Domain decomposition method for Maxwell's equations: Scattering off periodic structures
暂无分享,去创建一个
Frank Schmidt | Roland Klose | Lin Zschiedrich | Achim Schädle | Sven Burger | L. Zschiedrich | S. Burger | F. Schmidt | A. Schädle | R. Klose
[1] Ari Tervonen,et al. Integrated Optics: Devices, Materials, and Technologies VII , 2003 .
[2] Frank Schmidt,et al. Adaptive FEM Solver for the Computation of Electromagnetic Eigenmodes in 3D Photonic Crystal Structures , 2006 .
[3] O. Schenk,et al. ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .
[4] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..
[5] A. Toselli,et al. Some Results on Overlapping Schwarz Methods for the Helmholtz Equation Employing Perfectly Matched Layers , 1998 .
[6] Matti Lassas,et al. Analysis of the PML equations in general convex geometry , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[7] Patrick Joly,et al. Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .
[8] Charbel Farhat,et al. A non Overlapping Domain Decomposition Method for the Exterior Helmholtz Problem , 1997 .
[9] Frank Schmidt,et al. A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions , 2006 .
[10] S. Ghanemi,et al. A Domain Decomposition Method for Helmholtz Scattering Problems , 1997 .
[11] Bruno Després,et al. A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .
[12] Luca Plattner. A study in biomimetics : nanometer-scale, high-efficiency, dielectric diffractive structures on the wings of butterflies and in the silicon chip factory , 2003 .
[13] Frank Schmidt,et al. Adaptive Multigrid Methods for the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design , 2003 .
[14] F. Schmidt,et al. Solution of Interior-Exterior Helmholtz-Type Problems Based on the Pole Condition Concept , 2002 .
[15] Jin-Fa Lee,et al. A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .
[16] K. Oughstun,et al. Electromagnetic theory of gratings , 1982, IEEE Journal of Quantum Electronics.
[17] S. Burger,et al. JCMmode: an adaptive finite element solver for the computation of leaky modes , 2005, SPIE OPTO.
[18] Johannes Elschner,et al. EXISTENCE, UNIQUENESS AND REGULARITY FOR SOLUTIONSV OF THE CONICAL DIFFRACTION PROBLEM , 2000 .
[19] P. A. Martin. Multiple Scattering: an Invitation , 1995 .
[20] Olof B. Widlund,et al. Overlapping Schwarz Algorithms for Solving Helmholtz''s Equation , 1997 .
[21] B. Després,et al. Décomposition de domaine et problème de Helmholtz , 1990 .
[22] Lin Zschiedrich,et al. Benchmark of FEM, waveguide, and FDTD algorithms for rigorous mask simulation , 2005, SPIE Photomask Technology.
[23] Martin J. Gander,et al. Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..
[24] L. Zschiedrich,et al. Domain decomposition method for electromagnetic scattering problems: application to EUV lithography , 2005, NUSOD '05. Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices, 2005..
[25] Patrick Joly,et al. Mathematical and Numerical Aspects of Wave Propagation Phenomena , 1991 .
[26] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[27] K. Schuster. Anwendung der Vierpoltheorie auf die Probleme der optischen Reflexionsminderung, Reflexionsverstärkung und der Interferenzfilter. (Mit 2 Abbildungen) , 1949 .
[28] Matti Lassas,et al. On the existence and convergence of the solution of PML equations , 1998, Computing.
[29] Peter Monk,et al. The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..
[30] S. Burger,et al. Advanced finite element method for nano-resonators , 2006, SPIE OPTO.
[31] Johannes Elschner,et al. Finite Element Solution of Conical Diffraction Problems , 2002, Adv. Comput. Math..
[32] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..
[33] S. Burger,et al. Rigorous FEM simulation of EUV masks: influence of shape and material parameters , 2006, SPIE Photomask Technology.
[34] David Yevick,et al. Physics and Simulation of Optoelectronic Devices , 1992 .
[35] Luca Gerardo-Giorda,et al. New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..
[36] L. Zschiedrich,et al. Additive Schwarz method for scattering problems using the PML method at interfaces , 2007 .