Domain decomposition method for Maxwell's equations: Scattering off periodic structures

Abstract We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). An adaptive strategy to determine optimal PML parameters is developed. Thus we can treat Wood anomalies appearing in periodic structures. We focus on the application to typical EUV lithography line masks. Light propagation within the multilayer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer.

[1]  Ari Tervonen,et al.  Integrated Optics: Devices, Materials, and Technologies VII , 2003 .

[2]  Frank Schmidt,et al.  Adaptive FEM Solver for the Computation of Electromagnetic Eigenmodes in 3D Photonic Crystal Structures , 2006 .

[3]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[4]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[5]  A. Toselli,et al.  Some Results on Overlapping Schwarz Methods for the Helmholtz Equation Employing Perfectly Matched Layers , 1998 .

[6]  Matti Lassas,et al.  Analysis of the PML equations in general convex geometry , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Patrick Joly,et al.  Domain Decomposition Method for Harmonic Wave Propagation : A General Presentation , 2000 .

[8]  Charbel Farhat,et al.  A non Overlapping Domain Decomposition Method for the Exterior Helmholtz Problem , 1997 .

[9]  Frank Schmidt,et al.  A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions , 2006 .

[10]  S. Ghanemi,et al.  A Domain Decomposition Method for Helmholtz Scattering Problems , 1997 .

[11]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[12]  Luca Plattner A study in biomimetics : nanometer-scale, high-efficiency, dielectric diffractive structures on the wings of butterflies and in the silicon chip factory , 2003 .

[13]  Frank Schmidt,et al.  Adaptive Multigrid Methods for the Vectorial Maxwell Eigenvalue Problem for Optical Waveguide Design , 2003 .

[14]  F. Schmidt,et al.  Solution of Interior-Exterior Helmholtz-Type Problems Based on the Pole Condition Concept , 2002 .

[15]  Jin-Fa Lee,et al.  A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .

[16]  K. Oughstun,et al.  Electromagnetic theory of gratings , 1982, IEEE Journal of Quantum Electronics.

[17]  S. Burger,et al.  JCMmode: an adaptive finite element solver for the computation of leaky modes , 2005, SPIE OPTO.

[18]  Johannes Elschner,et al.  EXISTENCE, UNIQUENESS AND REGULARITY FOR SOLUTIONSV OF THE CONICAL DIFFRACTION PROBLEM , 2000 .

[19]  P. A. Martin Multiple Scattering: an Invitation , 1995 .

[20]  Olof B. Widlund,et al.  Overlapping Schwarz Algorithms for Solving Helmholtz''s Equation , 1997 .

[21]  B. Després,et al.  Décomposition de domaine et problème de Helmholtz , 1990 .

[22]  Lin Zschiedrich,et al.  Benchmark of FEM, waveguide, and FDTD algorithms for rigorous mask simulation , 2005, SPIE Photomask Technology.

[23]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[24]  L. Zschiedrich,et al.  Domain decomposition method for electromagnetic scattering problems: application to EUV lithography , 2005, NUSOD '05. Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices, 2005..

[25]  Patrick Joly,et al.  Mathematical and Numerical Aspects of Wave Propagation Phenomena , 1991 .

[26]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[27]  K. Schuster Anwendung der Vierpoltheorie auf die Probleme der optischen Reflexionsminderung, Reflexionsverstärkung und der Interferenzfilter. (Mit 2 Abbildungen) , 1949 .

[28]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[29]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[30]  S. Burger,et al.  Advanced finite element method for nano-resonators , 2006, SPIE OPTO.

[31]  Johannes Elschner,et al.  Finite Element Solution of Conical Diffraction Problems , 2002, Adv. Comput. Math..

[32]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[33]  S. Burger,et al.  Rigorous FEM simulation of EUV masks: influence of shape and material parameters , 2006, SPIE Photomask Technology.

[34]  David Yevick,et al.  Physics and Simulation of Optoelectronic Devices , 1992 .

[35]  Luca Gerardo-Giorda,et al.  New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..

[36]  L. Zschiedrich,et al.  Additive Schwarz method for scattering problems using the PML method at interfaces , 2007 .