Arithmetic progressions of length three in subsets of a random set
暂无分享,去创建一个
[1] Paul Erdös,et al. On Some Sequences of Integers , 1936 .
[2] K. F. Roth. On Certain Sets of Integers , 1953 .
[3] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[4] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[5] Joel H. Spencer. Restricted Ramsey Configurations , 1975, J. Comb. Theory, Ser. A.
[6] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[7] Jaroslav Nesetril,et al. Large minimal sets which force long arithmetic progressions , 1986, J. Comb. Theory, Ser. A.
[8] Vojtech Rödl,et al. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..
[9] V. Rödl,et al. The number of sub-matrics of a given type in a Hadamard matrix and related results , 1987 .
[10] Partite construction and Ramseyan theorems for sets, numbers and spaces , 1987 .
[11] A. Thomason. Pseudo-Random Graphs , 1987 .
[12] D. R. Heath-Brown. Integer Sets Containing No Arithmetic Progressions , 1987 .
[13] Vojtech Rödl,et al. The number of submatrices of a given type in a Hadamard matrix and related results , 1988, J. Comb. Theory, Ser. B.
[14] Bernd Voigt,et al. A sparse Graham-Rothschild theorem , 1988 .
[15] Peter J. Cameron,et al. Some sequences of integers , 1989, Discret. Math..
[16] Vojtech Rödl,et al. On ramsey families of sets , 1990, Graphs Comb..
[17] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[18] Yoshiharu Kohayakawa,et al. The Induced Size-Ramsey Number of Cycles , 1995, Combinatorics, Probability and Computing.