Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite

Abstract Metastable austenitic stainless steels are known to undergo a partial transformation of austenite into martensite as a consequence of plastic deformation. This transformation process depends on the chemical composition, the accumulative strain as well as the strain rate, the temperature and the microstructure. As most manufacturing processes of metallic components lead to plastic deformation in the material, the utilization of this transformation effect to adjust the monotonic and cyclic strength behaviour for the highly stressed areas of a component is evident. It is shown that monotonic and cyclic strength properties can be systematically changed by controlling the deformation-induced martensite content. The austenitic stainless steel studied was found to show a constant fatigue limit from 106 to 109 cycles that is primarily attributed to the strengthening effect of martensitic transformation. Load-increase tests were used to estimate an optimum martensite content in predeformed specimens to reach a maximum fatigue limit.

[1]  G. Chai The formation of subsurface non-defect fatigue crack origins , 2006 .

[2]  Raffaella Sesana,et al.  A new iteration method for the thermographic determination of fatigue limit in steels , 2005 .

[3]  Y. Murakam,et al.  Factors influencing the mechanism of superlong fatigue failure in steels , 1999 .

[4]  R. B. Tait,et al.  The fatigue behaviour of metastable (AISI-304) austenitic stainless steel wires , 2007 .

[5]  Stefanie E. Stanzl-Tschegg,et al.  Influence of loading frequency on high cycle fatigue properties of b.c.c. and h.c.p. metals , 2001 .

[6]  Wechselverformungsverhalten metastabiler austenitischer Stähle , 2001 .

[7]  T. Ogawa,et al.  Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test , 2006 .

[8]  Frank Walther,et al.  PHYBAL—A new method for lifetime prediction based on strain, temperature and electrical measurements , 2006 .

[9]  A. Hänsel Nichtisothermes Werkstoffmodell für die FE-Simulation von Blechumformprozessen mit metastabilen austenitischen CrNi-Stählen , 1998 .

[10]  H. Hänninen,et al.  Comparison of different methods for measuring strain induced α-martensite content in austenitic steels , 2004 .

[11]  H. Mughrabi,et al.  On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue , 2002 .

[12]  L. Kunz,et al.  Specific features of high-cycle and ultra-high-cycle fatigue , 2002 .

[13]  Yutaka Ono,et al.  Composition and Grain Size Dependencies of Strain-induced Martensitic Transformation in Metastable Austenitic Stainless Steels , 1977 .

[14]  H. Harig,et al.  ESTIMATION OF THE FATIGUE LIMIT BY PROGRESSIVELY‐INCREASING LOAD TESTS , 1980 .

[15]  Bernd-Arno Behrens,et al.  Transformation Induced Martensite Evolution in Metal Forming Processes of Stainless Steels , 2004 .

[16]  Y. Yamabayashi,et al.  A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel , 1997 .

[17]  M. Besel,et al.  Effect of low-frequency on fatigue behaviour of austenitic steel AISI 304 at room temperature and 25 °C , 2008 .

[18]  Siegfried S. Hecker,et al.  Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior , 1982 .

[19]  F. Walther,et al.  Investigation and modelling of theplasticity-induced martensite formation in metastable austenites , 2006 .

[20]  H. Mughrabi,et al.  Optimierte Festigkeitssteigerung eines metastabilen austenitischen Stahles durch wechselverformungsinduzierte Martensitumwandlung bei tiefen Temperaturen / Low-temperature Fatigue-induced Martensitic Transformation of a Metastable Austenitic Stainless Steel: Optimization of Strength and Fatigue Prop , 1993 .