A Fourier Collocation Approach for Transit-Time Ultrasonic Flowmeter Under Multi-Phase Flow Conditions
暂无分享,去创建一个
Benny Lassen | Lars Duggen | Matej Simurda | B. Lassen | N. Basse | N. Basse | L. Duggen | M. Simurda
[1] A. Mitzkus,et al. Acoustic transfer function of the clamp-on flowmeter , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[2] T. D. Mast,et al. A k-space method for coupled first-order acoustic propagation equations. , 2002, The Journal of the Acoustical Society of America.
[3] B. Fornberg. High-order finite differences and the pseudospectral method on staggered grids , 1990 .
[4] Tobin A. Driscoll,et al. Staggered Time Integrators for Wave Equations , 2000, SIAM J. Numer. Anal..
[5] B T Cox,et al. A first-order k-space model for elastic wave propagation in heterogeneous media. , 2011, The Journal of the Acoustical Society of America.
[6] Kazumi Watanabe. Integral Transform Techniques for Green's Function , 2013 .
[7] C. Tam,et al. Computational Aeroacoustics: A Wave Number Approach , 2014 .
[8] B Iooss,et al. Numerical simulation of transit-time ultrasonic flowmeters: uncertainties due to flow profile and fluid turbulence. , 2002, Ultrasonics.
[9] J. Hesthaven,et al. The Analysis and Construction of Perfectly Matched Layers for Linearized Euler Equations , 2022 .
[10] John B. Schneider,et al. Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .
[11] Eduardo Kausel,et al. Fundamental Solutions in Elastodynamics: Contents , 2006 .
[12] K.S. Mylvaganam. High-rangeability ultrasonic gas flowmeter for monitoring flare gas , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[13] Allan D. Pierce,et al. Wave equation for sound in fluids with unsteady inhomogeneous flow , 1990 .
[14] Kristel C. Meza-Fajardo,et al. A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .
[15] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .
[16] B. Auld,et al. Acoustic fields and waves in solids , 1973 .
[17] M. Ainslie. Plane‐wave reflection and transmission coefficients for a three‐layered elastic medium , 1995 .
[18] R. Lerch,et al. A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[19] J. Woodhouse,et al. Studies of the Accuracy of Clamp-on Transit Time Ultrasonic Flowmeters , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.
[20] M. Willatzen. Ultrasound transducer modeling-general theory and applications to ultrasound reciprocal systems , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[21] Jacques-Louis Lions,et al. Well-posed absorbing layer for hyperbolic problems , 2002, Numerische Mathematik.
[22] Qing Huo Liu,et al. The PSTD algorithm: A time-domain method requiring only two cells per wavelength , 1997 .
[23] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .