A Tabu Search Algorithm with Direct Representation for Strip Packing

This paper introduces a new tabu search algorithm for a two-dimensional (2D) Strip Packing Problem (2D-SPP). It integrates several key features: A direct representation of the problem, a satisfaction-based solving scheme, two different complementary neighborhoods, a diversification mechanism and a particular tabu structure. The representation allows inexpensive basic operations. The solving scheme considers the 2D-SPP as a succession of satisfaction problems. The goal of the combination of two neighborhoods is (to try) to reduce the height of the packing while avoiding solutions with (hard to fill) tall and thin wasted spaces. Diversification relies on a set of historically "interesting" packings. The tabu structure avoids visiting similar packings. To assess the proposed approach, experimental results are shown on a set of well-known benchmark instances and compared with previously reported tabu search algorithms as well as the best performing algorithms.

[1]  Marvin D. Troutt,et al.  Application of a mixed simulated annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing problem , 2003, Eur. J. Oper. Res..

[2]  Hiroshi Nagamochi,et al.  Practical Algorithms for Two-Dimensional Packing , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Bernard Chazelle,et al.  The Bottomn-Left Bin-Packing Heuristic: An Efficient Implementation , 1983, IEEE Transactions on Computers.

[5]  G. Gomez-Villouta,et al.  A Dedicated Genetic Algorithm for Two-Dimensional Non-Guillotine Strip Packing , 2007, 2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI).

[6]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[7]  Alberto Gómez,et al.  Solving the Packing and Strip-Packing Problems with Genetic Algorithms , 1999, IWANN.

[8]  Chengbin Chu,et al.  A COMPARATIVE STUDY OF EXACT ALGORITHMS FOR THE TWO DIMENSIONAL STRIP PACKING PROBLEM , 2007 .

[9]  Ramón Alvarez-Valdés,et al.  Reactive GRASP for the strip-packing problem , 2008, Comput. Oper. Res..

[10]  E. Hopper,et al.  An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem , 2001, Eur. J. Oper. Res..

[11]  B. Neveu,et al.  Incremental Move for 2D Strip-Packing , 2007, 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007).

[12]  Hiroshi Nagamochi,et al.  Exact algorithms for the two-dimensional strip packing problem with and without rotations , 2009, Eur. J. Oper. Res..

[13]  Ramón Alvarez-Valdés,et al.  A tabu search algorithm for a two-dimensional non-guillotine cutting problem , 2007, Eur. J. Oper. Res..

[14]  Carlos Cotta,et al.  Adaptive and multilevel metaheuristics , 2008 .

[15]  Wallace Kit-Sang Tang,et al.  Strip-packing using hybrid genetic approach , 2004, Eng. Appl. Artif. Intell..

[16]  Daniele Vigo,et al.  An Exact Approach to the Strip-Packing Problem , 2003, INFORMS J. Comput..

[17]  Yew-Soon Ong,et al.  Advances in Natural Computation, First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I , 2005, ICNC.

[18]  William B. Dowsland On a Research Bibliography for Cutting and Packing Problems , 1992 .

[19]  E. A. Mukhacheva,et al.  The Rectangular Packing Problem: Local Optimum Search Methods Based on Block Structures , 2004 .

[20]  Ansheng Deng,et al.  A new heuristic recursive algorithm for the strip rectangular packing problem , 2006, Comput. Oper. Res..

[21]  Andreas Bortfeldt,et al.  A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces , 2006, Eur. J. Oper. Res..

[22]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[23]  Joe Marks,et al.  Exhaustive approaches to 2D rectangular perfect packings , 2004, Inf. Process. Lett..

[24]  Bertrand Neveu,et al.  An Efficient Hyperheuristic for Strip-Packing Problems , 2008, Adaptive and Multilevel Metaheuristics.

[25]  J. Hayek Le problème de bin-packing en deux-dimensions, le cas non-orienté : résolution approchée et bornes inférieures. , 2006 .

[26]  Manuel Iori,et al.  Metaheuristic Algorithms for the Strip Packing Problem , 2003 .

[27]  Ronald L. Rivest,et al.  Orthogonal Packings in Two Dimensions , 1980, SIAM J. Comput..

[28]  Panos M. Pardalos,et al.  Optimization and Industry: New Frontiers , 2011 .

[29]  Gilles Trombettoni,et al.  A Strip Packing Solving Method Using an Incremental Move Based on Maximal Holes , 2008, Int. J. Artif. Intell. Tools.

[30]  Paul E. Sweeney,et al.  Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography , 1992 .

[31]  Bertrand Neveu Incremental Move for Strip-Packing , 2007 .

[32]  José Mira,et al.  Foundations and Tools for Neural Modeling , 1999, Lecture Notes in Computer Science.

[33]  Zafer Bingul,et al.  Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems , 2006, Eng. Appl. Artif. Intell..

[34]  Jakub Marecek,et al.  Handbook of Approximation Algorithms and Metaheuristics , 2010, Comput. J..

[35]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[36]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[37]  Defu Zhang,et al.  A Meta-heuristic Algorithm for the Strip Rectangular Packing Problem , 2005, ICNC.