On character sheaves and characters of reductive groups at unipotent classes

With a view to determining character values of finite reductive groups at unipotent elements, we prove a number of results concerning inner products of generalised Gelfand-Graev characters with characteristic functions of character sheaves, here called Lusztig functions. These are used to determine projections of generalised Gelfand-Graev characters to the space of unipo- tent characters, and to the space of characters with a given wave front set. Such projections are expressed largely in terms of Weyl group data. We show how the values of characters at their unipotent support or wave front set are determined by such data. In some exceptional groups we show that the projection of a generalised Gelfand-Graev character to a family with the same wave front set is (up to sign) the dual of a Mellin transform. Using these results, in certain cases we are able to determine roots of unity which relate almost characters to the characteristic functions. In particular we show how to compute the values of all unipotent characters at all unipotent classes for the exceptional adjoint groups of type G2, F4, E6, E7 and E8. We also pro- vide an appendix which gives a complete list of the cuspidal character sheaves on all quasi-simple groups.

[1]  G. Lusztig Restriction of a character sheaf to conjugacy classes , 2012, 1204.3521.

[2]  G. Lusztig Families and Springer’s correspondence , 2012, 1201.5593.

[3]  Jay Taylor On Unipotent Supports of Reductive Groups with a Disconnected Centre , 2011, 1108.4814.

[4]  G. Lusztig On the cleanness of cuspidal character sheaves , 2011, 1101.0752.

[5]  A. Aubert,et al.  Localisation de faisceaux caractères , 2010 .

[6]  T. Shoji Lusztig's conjecture for finite classical groups with even characteristic , 2007, 0712.2296.

[7]  T. Shoji Lusztig's conjecture for finite special linear groups , 2005, math/0502180.

[8]  V. Ostrik A remark on cuspidal local systems , 2003, math/0312195.

[9]  G. Lehrer,et al.  The space of unipotently supported class functions on a finite reductive group , 2002, math/0206076.

[10]  M. Geck Character Sheaves and Generalized Gelfand–Graev Characters , 1999 .

[11]  Toshiaki Shoji,et al.  Character sheaves and almost characters of reductive groups, II , 1995 .

[12]  George Lusztic A unipotent support for irreducible representations , 1992 .

[13]  George Lusztig,et al.  Remarks on computing irreducible characters , 1992 .

[14]  G. Lusztig Green functions and character sheaves , 1990 .

[15]  G. Lusztig On the character values of finite Chevalley groups at unipotent elements , 1986 .

[16]  N. Kawanaka Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field I , 1986 .

[17]  George Lusztig,et al.  Character sheaves, V , 1985 .

[18]  G. Lusztig Intersection cohomology complexes on a reductive group , 1984 .

[19]  George Lusztig,et al.  Characters of reductive groups over a finite field , 1984 .

[20]  G. Lusztig UNIPOTENT CHARACTERS OF THE EVEN ORTHOGONAL GROUPS OVER A FINITE FIELD , 1982 .

[21]  C. Bonnafé Sur les caractères des groupes réductifs finis à centre non connexe : applications aux groupes spéciaux linéaires et unitaires , 2018, Astérisque.

[22]  J. Waldspurger Une conjecture de Lusztig pour les groupes classiques , 2004 .

[23]  George Luztig Character Sheaves I , 2003 .

[24]  G. Lehrer,et al.  On Gel'fand-Graev characters of reductive groups with disconnected centre. , 1997 .

[25]  G. Lehrer,et al.  Journal F Ur Die Reine Und Angewandte Mathematik the Characters of the Group of Rational Points of a Reductive Group with Non{connected Centre , 2022 .

[26]  Noriaki Kawanaka,et al.  Shintani lifting and Gelfand-Graev representations , 1987 .

[27]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[28]  N. Spaltenstein On the Generalized Springer Correspondence for Exceptional Groups , 1985 .

[29]  G. Lusztig,et al.  On the Generalized Springer Correspondence for Classical Groups , 1985 .

[30]  Jean Michel,et al.  Fonctions $L$ des variétés de Deligne-Lusztig et descente de Shintani , 1985 .

[31]  N. Spaltenstein Classes unipotentes et sous-groupes de Borel , 1982 .

[32]  G. Lusztig Representation Theory of Lie Groups: On the reflection representation of a finite Chevalley group , 1980 .

[33]  G. Lusztig A class of irreducible representations of a Weyl group , 1979 .