Diversifying Search Engine Results

Nowadays1, that the use. of search engines has been expanded due to user requirements, there is a great need to diversify their results in order to cover as many informational needs as possible and not to repeat similar content for a given query. In this context, this paper was initiated, which, using textual commenting techniques on static and dynamic ranking algorithms, applies cutting and merging of unnecessary information, aiming at differentiating the results without decreasing their relevance.

[1]  Rada Mihalcea,et al.  Wikify!: linking documents to encyclopedic knowledge , 2007, CIKM '07.

[2]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[3]  Sihem Amer-Yahia,et al.  Efficient Computation of Diverse Query Results , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[4]  Rada Mihalcea,et al.  Word Sense Disambiguation , 2015, Encyclopedia of Machine Learning.

[5]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[6]  Michael E. Lesk,et al.  Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone , 1986, SIGDOC '86.

[7]  Thorsten Joachims,et al.  Dynamic ranked retrieval , 2011, WSDM '11.

[8]  Paolo Ferragina,et al.  TAGME: on-the-fly annotation of short text fragments (by wikipedia entities) , 2010, CIKM.

[9]  Roberto Navigli,et al.  Entity Linking meets Word Sense Disambiguation: a Unified Approach , 2014, TACL.

[10]  Christian Bizer,et al.  DBpedia spotlight: shedding light on the web of documents , 2011, I-Semantics '11.

[11]  Christos Makris,et al.  Reducing Redundant Information in Search Results Employing Approximation Algorithms , 2014, DEXA.

[12]  Filip Radlinski,et al.  Detecting duplicate web documents using clickthrough data , 2011, WSDM '11.

[13]  Gary Marchionini,et al.  Synthesis Lectures on Information Concepts, Retrieval, and Services , 2009 .

[14]  Thorsten Joachims,et al.  New Learning Frameworks for Information Retrieval , 2011 .

[15]  Grace HuiYang,et al.  Dynamic Information Retrieval Modeling , 2016 .

[16]  Mark Sanderson,et al.  Using score differences for search result diversification , 2014, SIGIR.

[17]  Sreenivas Gollapudi,et al.  An axiomatic approach for result diversification , 2009, WWW '09.

[18]  Ian H. Witten,et al.  Learning to link with wikipedia , 2008, CIKM '08.

[19]  Yi Zhang,et al.  Novelty and redundancy detection in adaptive filtering , 2002, SIGIR '02.

[20]  Wolfgang Nejdl,et al.  Current Approaches to Search Result Diversification , 2009, LivingWeb@ISWC.

[21]  Nick Koudas,et al.  Efficient diversity-aware search , 2011, SIGMOD '11.

[22]  Sofia Stamou,et al.  Reducing information redundancy in search results , 2013, SAC '13.