A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater

[1]  M. Eisaman Negative Emissions Technologies: The Tradeoffs of Air-Capture Economics , 2020 .

[2]  A. Goeppert,et al.  Hydroxide Based Integrated CO2 Capture from Air and Conversion to Methanol. , 2020, Journal of the American Chemical Society.

[3]  David Sinton,et al.  CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2 , 2020, Science.

[4]  H. Atwater,et al.  CO2 Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination , 2020, ACS Energy Letters.

[5]  Corinne Le Quéré,et al.  Carbon dioxide emissions continue to grow amidst slowly emerging climate policies , 2020 .

[6]  Christine M. Gabardo,et al.  Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly , 2019, Joule.

[7]  W. Drisdell,et al.  A Hybrid Catalyst-Bonded Membrane Device for Electrochemical Carbon Monoxide Reduction at Different Relative Humidities , 2019, ACS Sustainable Chemistry & Engineering.

[8]  Wilson A. Smith,et al.  Pathways to Industrial-Scale Fuel Out of Thin Air from CO2 Electrolysis , 2019, Joule.

[9]  M. Tavoni,et al.  An inter-model assessment of the role of direct air capture in deep mitigation pathways , 2019, Nature Communications.

[10]  F. Joos,et al.  Renewable CO2 recycling and synthetic fuel production in a marine environment , 2019, Proceedings of the National Academy of Sciences.

[11]  Xiaobing Hu,et al.  Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate , 2019, Nature Catalysis.

[12]  Matthew W. Kanan,et al.  Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C2 Products with High Single-Pass Conversion , 2019, Joule.

[13]  T. Jaramillo,et al.  Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm , 2018, ACS Energy Letters.

[14]  N. Bates Seawater Carbonate Chemistry Distributions Across the Eastern South Pacific Ocean Sampled as Part of the GEOTRACES Project and Changes in Marine Carbonate Chemistry Over the Past 20 Years , 2018, Front. Mar. Sci..

[15]  Atul K. Jain,et al.  Editor Comment , 2018 .

[16]  Grahame Smith,et al.  The way forward , 2018, Reaching Net Zero.

[17]  David William Keith,et al.  A Process for Capturing CO2 from the Atmosphere , 2018, Joule.

[18]  Jay Pearlman,et al.  Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs) Frameworks , 2018, Front. Mar. Sci..

[19]  Christine M. Gabardo,et al.  CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface , 2018, Science.

[20]  Solomon F. Brown,et al.  Carbon capture and storage (CCS): the way forward , 2018 .

[21]  N. Williams,et al.  Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power , 2018 .

[22]  A. Frenkel,et al.  Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. , 2018, Journal of the American Chemical Society.

[23]  R. DeVaul,et al.  Indirect ocean capture of atmospheric CO2: Part II. Understanding the cost of negative emissions , 2018 .

[24]  Jungbin Kim,et al.  A novel single-pass reverse osmosis configuration for high-purity water production and low energy consumption in seawater desalination , 2018 .

[25]  Tai‐Shung Chung,et al.  Techno-Economic Evaluation of Various RO+PRO and RO+FO Integrated Processes , 2018, Membrane Technology for Osmotic Power Generation by Pressure Retarded Osmosis.

[26]  R. DeVaul,et al.  Indirect ocean capture of atmospheric CO 2 : Part I. Prototype of a negative emissions technology , 2017 .

[27]  M. Holzer,et al.  Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning , 2017, Nature.

[28]  F. Williams,et al.  Development of an Electrolytic Cation Exchange Module for the Simultaneous Extraction of Carbon Dioxide and Hydrogen Gas from Natural Seawater , 2017 .

[29]  Manoj Sharma,et al.  Desalination technology in power generation , 2016 .

[30]  A. Bell,et al.  Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. , 2016, Journal of the American Chemical Society.

[31]  Christopher W. Jones,et al.  Direct Capture of CO2 from Ambient Air. , 2016, Chemical reviews.

[32]  Steven Chu,et al.  Carbon Capture and Sequestration , 2016 .

[33]  Xun Lu,et al.  The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. , 2016, Physical chemistry chemical physics : PCCP.

[34]  E. Rubin,et al.  The cost of CO2 capture and storage , 2015 .

[35]  Yan Liu,et al.  Optimization of reverse osmosis networks with split partial second pass design , 2015 .

[36]  Maedeh P. Shahabi,et al.  Environmental and economic assessment of beach well intake versus open intake for seawater reverse osmosis desalination , 2015 .

[37]  N. Lewis,et al.  Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. , 2014, ChemSusChem.

[38]  Frederick W. Williams,et al.  Feasibility of CO2 Extraction from Seawater and Simultaneous Hydrogen Gas Generation Using a Novel and Robust Electrolytic Cation Exchange Module Based on Continuous Electrodeionization Technology , 2014 .

[39]  T. DeVries The oceanic anthropogenic CO2 sink: Storage, air‐sea fluxes, and transports over the industrial era , 2014 .

[40]  Etosha R. Cave,et al.  Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[41]  S. Cykert A New Paradigm. , 2014, Chest.

[42]  Michael J. Singleton,et al.  Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production , 2013, Proceedings of the National Academy of Sciences.

[43]  Massimo Tavoni,et al.  Modeling meets science and technology: an introduction to a special issue on negative emissions , 2013, Climatic Change.

[44]  A. Navarra,et al.  Adjustment of the natural ocean carbon cycle to negative emission rates , 2013, Climatic Change.

[45]  Kevin Ummel,et al.  Carma Revisited: An Updated Database of Carbon Dioxide Emissions from Power Plants Worldwide , 2012 .

[46]  Sarah Brennan,et al.  The urgency of the development of CO2 capture from ambient air , 2012, Proceedings of the National Academy of Sciences.

[47]  Scott C. Doney,et al.  Global ocean storage of anthropogenic carbon , 2012 .

[48]  Craig Eldershaw,et al.  CO2 extraction from seawater using bipolar membrane electrodialysis , 2012 .

[49]  Robert B. May,et al.  Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. , 2011, Journal of the American Chemical Society.

[50]  Joon Ha Kim,et al.  Development of a package model for process simulation and cost estimation of seawater reverse osmosis desalination plant , 2009 .

[51]  David W. Keith,et al.  Why Capture CO2 from the Atmosphere? , 2009, Science.

[52]  François Maréchal,et al.  Multi-objective optimization of RO desalination plants , 2008 .

[53]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[54]  Pio A. Aguirre,et al.  Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm , 2005 .

[55]  Hideto Matsuyama,et al.  Evaluation of energy consumption for separation of CO2 in flue gas by hollow fiber facilitated transport membrane module with permeation of amine solution , 2005 .

[56]  R. Harrington Part II , 2004, Bitter Freedom.

[57]  B. Delille CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2002 .

[58]  Matthias Wessling,et al.  Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid–base electrodialysis , 2001 .

[59]  Warren D. Seider,et al.  Product and Process Design Principles: Synthesis, Analysis, and Evaluation , 1998 .

[60]  P. Ramirez,et al.  Electrochemical characterization of polymer ion-exchange bipolar membranes , 1997 .

[61]  Louise Poissant Part I , 1996, Leonardo.

[62]  Mohammad Nurul Alam Hawlader,et al.  Design and economics of RO seawater desalination , 1996 .

[63]  Andrew G. Dickson,et al.  Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2 , 1994 .

[64]  T. S. Light,et al.  Potentiometric determination of Kw with the glass electrode , 1962 .

[65]  K. Sollner ION EXCHANGE MEMBRANES , 1953, Annals of the New York Academy of Sciences.

[66]  William N. White,et al.  Communication—Electrochemical Characterization of Commercial Bipolar Membranes under Electrolyte Conditions Relevant to Solar Fuels Technologies , 2016 .

[67]  J. Kasahara,et al.  The cost of CO 2 capture and storage , 2016 .

[68]  N. Craig Electrochemical Behavior of Bipolar Membranes , 2013 .

[69]  D. Wolf-Gladrow,et al.  Equilibrium, Kinetics, Isotopes , 2010 .