Nanoscale multireference quantum chemistry: full configuration interaction on graphical processing units.

Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.

[1]  Julio Daniel Carvalho Maia,et al.  GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. , 2012, Journal of chemical theory and computation.

[2]  Richard L. Martin NATURAL TRANSITION ORBITALS , 2003 .

[3]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. , 2008, Journal of chemical theory and computation.

[4]  C. David Sherrill,et al.  Natural orbitals as substitutes for optimized orbitals in complete active space wavefunctions , 2004 .

[5]  Jörg Kussmann,et al.  Preselective Screening for Linear-Scaling Exact Exchange-Gradient Calculations for Graphics Processing Units and General Strong-Scaling Massively Parallel Calculations. , 2015, Journal of chemical theory and computation.

[6]  Oreste Villa,et al.  Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems. , 2013, Journal of chemical theory and computation.

[7]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[8]  Stefano Evangelisti,et al.  A vector and parallel full configuration interaction algorithm , 1993 .

[9]  Benjamin G. Levine,et al.  Polaronic Relaxation by Three-Electron Bond Formation in Graphitic Carbon Nitrides , 2014 .

[10]  Kenneth M. Merz,et al.  Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units. , 2015, Journal of chemical theory and computation.

[11]  K. Freed,et al.  Geometry optimization of radicaloid systems using improved virtual orbital-complete active space configuration interaction (IVO-CASCI) analytical gradient method. , 2011, The journal of physical chemistry. A.

[12]  Ivan S. Ufimtsev,et al.  An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. , 2015, The Journal of chemical physics.

[13]  S. Matsika,et al.  High-Multiplicity Natural Orbitals in Multireference Configuration Interaction for Excited States. , 2012, Journal of chemical theory and computation.

[14]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[15]  Emily A. Carter,et al.  Pseudospectral full configuration interaction , 1992 .

[16]  G. Granucci,et al.  Direct semiclassical simulation of photochemical processes with semiempirical wave functions , 2001 .

[17]  Roland Lindh,et al.  Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: geometry optimization and spin-state energetics of a ruthenium nitrosyl complex. , 2014, The Journal of chemical physics.

[18]  Edward G Hohenstein,et al.  Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. , 2015, The Journal of chemical physics.

[19]  Michael A. Robb,et al.  An evaluation of three direct MC-SCF procedures , 1992 .

[20]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[21]  Giovanni Li Manni,et al.  The generalized active space concept in multiconfigurational self-consistent field methods. , 2011, The Journal of chemical physics.

[22]  Nicholas C. Handy,et al.  Multi-root configuration interaction calculations , 1980 .

[23]  Benjamin G. Levine,et al.  Simulated evolution of fluorophores for light emitting diodes. , 2015, The Journal of chemical physics.

[24]  Michael W. Schmidt,et al.  The construction and interpretation of MCSCF wavefunctions. , 1998, Annual review of physical chemistry.

[25]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[26]  A Eugene DePrince,et al.  Coupled Cluster Theory on Graphics Processing Units I. The Coupled Cluster Doubles Method. , 2011, Journal of chemical theory and computation.

[27]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. , 2009, Journal of chemical theory and computation.

[28]  Kenneth M Merz,et al.  Acceleration of Electron Repulsion Integral Evaluation on Graphics Processing Units via Use of Recurrence Relations. , 2013, Journal of chemical theory and computation.

[29]  Andrey Asadchev,et al.  Fast and Flexible Coupled Cluster Implementation. , 2013, Journal of chemical theory and computation.

[30]  A. Mitrushenkov Passing the several billions limit in FCI calculations on a mini-computer , 1994 .

[31]  Xavier Andrade,et al.  Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods. , 2013, Journal of chemical theory and computation.

[32]  J. Ivanic Direct configuration interaction and multiconfigurational self-consistent-field method for multiple active spaces with variable occupations. I. Method , 2003 .

[33]  Koji Yasuda,et al.  Efficient calculation of two‐electron integrals for high angular basis functions , 2014 .

[34]  K. Freed,et al.  The improved virtual orbital-complete active space configuration interaction method, a “packageable” efficient ab initio many-body method for describing electronically excited states , 2001 .

[35]  Peter J. Knowles,et al.  A determinant based full configuration interaction program , 1989 .

[36]  Karl A. Wilkinson,et al.  Acceleration of the GAMESS‐UK electronic structure package on graphical processing units , 2011, J. Comput. Chem..

[37]  M. Reiher,et al.  Decomposition of density matrix renormalization group states into a Slater determinant basis. , 2007, The Journal of chemical physics.

[38]  S. Matsika,et al.  High-multiplicity natural orbitals in multireference configuration interaction for excited state potential energy surfaces. , 2013, The journal of physical chemistry. A.

[39]  Lu Wang,et al.  Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site , 2014, Proceedings of the National Academy of Sciences.

[40]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[41]  Sriram Krishnamoorthy,et al.  GPU-Based Implementations of the Noniterative Regularized-CCSD(T) Corrections: Applications to Strongly Correlated Systems. , 2011, Journal of chemical theory and computation.

[42]  Per E. M. Siegbahn,et al.  A new direct CI method for large CI expansions in a small orbital space , 1984 .

[43]  Ivan S. Ufimtsev,et al.  Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs). , 2011, Journal of chemical theory and computation.

[44]  John E. Stone,et al.  Fast analysis of molecular dynamics trajectories with graphics processing units - Radial distribution function histogramming , 2011, J. Comput. Phys..

[45]  B. A. Hess,et al.  Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach , 2002, cond-mat/0204602.

[46]  Peter Pulay,et al.  Selection of active spaces for multiconfigurational wavefunctions. , 2015, The Journal of chemical physics.

[47]  D. Gamelin,et al.  Characterization of Excited-State Magnetic Exchange in Mn2+-Doped ZnO Quantum Dots Using Time-Dependent Density Functional Theory , 2011 .

[48]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[49]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[50]  Takeshi Yoshikawa,et al.  Linear‐scaling self‐consistent field calculations based on divide‐and‐conquer method using resolution‐of‐identity approximation on graphical processing units , 2015, J. Comput. Chem..

[51]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[52]  Peter Pulay,et al.  The unrestricted natural orbital–complete active space (UNO–CAS) method: An inexpensive alternative to the complete active space–self‐consistent‐field (CAS–SCF) method , 1989 .

[53]  Brett M. Bode,et al.  Uncontracted Rys Quadrature Implementation of up to G Functions on Graphical Processing Units. , 2010, Journal of chemical theory and computation.

[54]  Francesco Aquilante,et al.  SplitGAS Method for Strong Correlation and the Challenging Case of Cr2. , 2013, Journal of chemical theory and computation.

[55]  Seiichiro Ten-no,et al.  Multiconfiguration self‐consistent field procedure employing linear combination of atomic‐electron distributions , 1996 .

[56]  Mark S Gordon,et al.  Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi. , 2014, Journal of chemical theory and computation.

[57]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. , 2009, Journal of chemical theory and computation.

[58]  Bobby G. Sumpter,et al.  Density-fitted singles and doubles coupled cluster on graphics processing units , 2014 .

[59]  Benjamin G. Levine,et al.  Reducing the propensity for unphysical wavefunction symmetry breaking in multireference calculations of the excited states of semiconductor clusters. , 2013, The Journal of chemical physics.

[60]  Guido Fano,et al.  Quantum chemistry using the density matrix renormalization group , 2001 .

[61]  Sriram Krishnamoorthy,et al.  Optimizing tensor contraction expressions for hybrid CPU-GPU execution , 2013, Cluster Computing.

[62]  Zoltán Rolik,et al.  A sparse matrix based full-configuration interaction algorithm. , 2008, The Journal of chemical physics.

[63]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[64]  S A Maurer,et al.  Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units. , 2014, The Journal of chemical physics.

[65]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[66]  Yihan Shao,et al.  Accelerating resolution-of-the-identity second-order Møller-Plesset quantum chemistry calculations with graphical processing units. , 2008, The journal of physical chemistry. A.

[67]  Peter J. Knowles,et al.  Very large full configuration interaction calculations , 1989 .

[68]  Alán Aspuru-Guzik,et al.  Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units , 2010, Computing in Science & Engineering.

[69]  Włodzisław Duch,et al.  GRMS or Graphical Representation of Model Spaces , 1986 .

[70]  Matías A Nitsche,et al.  GPU Accelerated Implementation of Density Functional Theory for Hybrid QM/MM Simulations. , 2014, Journal of chemical theory and computation.

[71]  R. McGibbon,et al.  Discovering chemistry with an ab initio nanoreactor , 2014, Nature chemistry.

[72]  Roland Lindh,et al.  Accurate ab initio density fitting for multiconfigurational self-consistent field methods. , 2008, The Journal of chemical physics.

[73]  K. Hirao,et al.  A quasi-complete active space self-consistent field method , 2000 .

[74]  Xin Wu,et al.  Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform. , 2012, Journal of chemical theory and computation.

[75]  Mark S. Gordon,et al.  New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock. , 2012, Journal of chemical theory and computation.

[76]  Christine M. Isborn,et al.  Excited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units , 2011, Journal of chemical theory and computation.

[77]  Toru Shiozaki,et al.  Communication: Active-space decomposition for molecular dimers. , 2013, The Journal of chemical physics.

[78]  P. Král,et al.  Chemical sensing with switchable transport channels in graphene grain boundaries , 2014, Nature Communications.

[79]  Dmitry I. Lyakh An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU , 2015, Comput. Phys. Commun..

[80]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[81]  T. Martínez,et al.  Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF. , 2010, The Journal of chemical physics.

[82]  I. Shavitt Matrix element evaluation in the unitary group approach to the electron correlation problem , 1978 .

[83]  Josef Paldus,et al.  Vectorizable approach to molecular CI problems using determinantal basis , 1989 .

[84]  A. Saxena,et al.  Localization of Electronic Excitations in Conjugated Polymers Studied by DFT , 2011 .