On the Performance of Interleavers for Quantum Turbo Codes

Quantum turbo codes (QTC) have shown excellent error correction capabilities in the setting of quantum communication, achieving a performance less than 1 dB away from their corresponding hashing bounds. Existing QTCs have been constructed using uniform random interleavers. However, interleaver design plays an important role in the optimization of classical turbo codes. Consequently, inspired by the widely used classical-to-quantum isomorphism, this paper studies the integration of classical interleaving design methods into the paradigm of quantum turbo coding. Simulations results demonstrate that error floors in QTCs can be lowered significantly, while decreasing memory consumption, by proper interleaving design without increasing the overall decoding complexity of the system.

[1]  Christos E. Dimakis,et al.  A Low Complexity Algorithm for Generating Turbo Code s-Random Interleavers , 2008, Wirel. Pers. Commun..

[2]  Lajos Hanzo,et al.  EXIT-Chart-Aided Near-Capacity Quantum Turbo Code Design , 2015, IEEE Transactions on Vehicular Technology.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[5]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[6]  Osvaldo R.Peinado ISO/TC 20/SC 13 Daten und Informationsübertragungssysteme für die RaumfahrtConsultative Committee for Space Data Systems (CCSDS) , 2010 .

[7]  Stephen B. Wicker,et al.  Turbo Coding , 1998 .

[8]  Lajos Hanzo,et al.  EXIT-Chart Aided Quantum Code Design Improves the Normalised Throughput of Realistic Quantum Devices , 2016, IEEE Access.

[9]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[10]  Ljupco Kocarev,et al.  Design of flexible-length S-random interleaver for turbo codes , 2004, IEEE Communications Letters.

[11]  T. Wysocki,et al.  Performance of convolutional interleavers with different spacing parameters in turbo codes , 2005, 2005 Australian Communications Theory Workshop.

[12]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[13]  Michel C. Jeruchim,et al.  Techniques for Estimating the Bit Error Rate in the Simulation of Digital Communication Systems , 1984, IEEE J. Sel. Areas Commun..

[14]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[15]  N. J. A. Sloane,et al.  Interleaver design for turbo codes , 2001, IEEE J. Sel. Areas Commun..

[16]  Francisco J. García-Ugalde,et al.  A comparative study for turbo code interleavers designed for short frame size and relatively high SNR channel , 2011, 2011 5th International Conference on Signal Processing and Communication Systems (ICSPCS).

[17]  M. Kovaci,et al.  The performances of interleavers used in turbo codes , 2005, International Symposium on Signals, Circuits and Systems, 2005. ISSCS 2005..

[18]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[19]  Lajos Hanzo,et al.  Serially Concatenated Unity-Rate Codes Improve Quantum Codes Without Coding-Rate Reduction , 2016, IEEE Communications Letters.

[20]  C. Heegard,et al.  Interleaver design methods for turbo codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[21]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.