Low-dimensional chaos and fractal properties of long-term sunspot activity

Two primary solar-activity indicators− sunspot numbers (SNs) and sunspot areas (SAs) in the time interval from November 1874 to December 2012 − are used to determine the chaotic and fractal properties of solar activity. The results show that (1) the long-term solar activity is governed by a low-dimensional chaotic strange attractor, and its fractal motion shows a long-term persistence on large scales; (2) both the fractal dimension and maximal Lyapunov exponent of SAs are larger than those of Sns, implying that the dynamical system of SAs is more chaotic and complex than SNs; (3) the predictions of solar activity should only be done for short- to mid-term behaviors due to its intrinsic complexity; moreover, the predictability time of SAs is obviously smaller than that of SNs and previous results.

[1]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[2]  Ke-Jun Li,et al.  Synchronization of Sunspot Numbers and Sunspot Areas , 2009 .

[3]  Xing Li,et al.  Phase asynchrony between coronal index and sunspot numbers , 2012 .

[4]  M. A. Reynolds,et al.  Measurement of the Stochasticity of Low-Latitude Geomagnetic Temporal Variations , 2003 .

[5]  P. Gao,et al.  Sunspot Unit Area: A New Parameter to Describe Long-Term Solar Variability , 2005 .

[6]  Z. Qu,et al.  The Hemispheric Asymmetry of Polar Faculae , 2012 .

[7]  G. Mindlin,et al.  Biorthogonal decomposition techniques unveil the nature of the irregularities observed in the solar cycle. , 2002, Physical review letters.

[8]  H. Zirin,et al.  Lifetime of Intranetwork Magnetic Elements , 1998 .

[9]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[10]  Awadhesh Prasad,et al.  Nonlinear Time Series Analysis of Sunspot Data , 2009, 0909.4162.

[11]  M. Mundt,et al.  Chaos in the sunspot cycle: Analysis and Prediction , 1991 .

[12]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[13]  Z. Qu,et al.  Phase Relationship between Polar Faculae and Sunspot Numbers Revisited: Wavelet Transform Analyses , 2013 .

[14]  James R. Carr Statistical self-affinity, fractal dimension, and geologic interpretation , 1997 .

[15]  C. Cellucci,et al.  Research Note: Nonlinear time series analysis of northern and southern solar hemisphere daily sunspot numbers in search of short-term chaotic behavior , 2001 .

[16]  L. Cao Practical method for determining the minimum embedding dimension of a scalar time series , 1997 .

[17]  Joan Feynman,et al.  Period and phase of the 88-year solar cycle and the Maunder minimum: Evidence for a chaotic sun , 1990 .

[18]  I. Usoskin A History of Solar Activity over Millennia , 2008 .

[19]  M. Kremliovsky Can we understand time scales of solar activity? , 1994 .

[20]  P. Charbonneau,et al.  Stochastic Fluctuations in a Babcock-Leighton Model of the Solar Cycle , 2000 .

[21]  D. Prichard,et al.  Do the sunspot numbers form a “chaotic” set? , 1992 .

[22]  Luis A. Aguirre,et al.  Evidence for low dimensional chaos in sunspot cycles , 2006 .

[23]  Ke-Jun Li,et al.  Low dimensional chaos from the group sunspot numbers , 2007 .

[24]  R. A. Greenkorn,et al.  Analysis of Sunspot Activity Cycles , 2009 .

[25]  Z. Qu,et al.  The hemispheric asynchrony of polar faculae during solar cycles 19–22 , 2013 .

[26]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[27]  F. Takens Detecting strange attractors in turbulence , 1981 .

[28]  J. Ballester,et al.  Rescaled range analysis of the asymmetry of solar activity , 1996 .

[29]  Bo Li,et al.  Relative phase analyses of 10.7 cm solar radio flux with sunspot numbers , 2013 .

[30]  Ke-Jun Li,et al.  Low-Dimensional Chaos of High-Latitude Solar Activity , 2007 .

[31]  M. Tsekov,et al.  Empirical evidences of persistence and dynamical chaos in solar–terrestrial phenomena , 2007 .

[32]  I. Skokić,et al.  The chaotic solar cycle - II. Analysis of cosmogenic 10Be data , 2013, 1402.2776.

[33]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[34]  Shichun Xu,et al.  Long-term hemispheric variation of the flare index , 2013 .

[35]  Xiaoli Yan,et al.  Phase analysis of sunspot group numbers on both solar hemispheres , 2013 .