Convoy movement problem: a civilian perspective

We study the convoy movement problem in peacetime from a civilian perspective by seeking to minimize civilian traffic disruptions. We develop an exact hybrid algorithm that combines the k-shortest path algorithm along with finding a minimum weighted k-clique in a k-partite graph. Through this coupling scheme, we are able to exactly solve large instances of the convoy movement problem without relaxing many of its complicating constraints. An experimental study is performed based on pseudo-transportation networks to illustrate the computational viability of the method as well as policy implications.

[1]  Jose Luis Esteves dos Santos,et al.  A New Shortest Paths Ranking Algorithm , 1999 .

[2]  A. L. Tuson,et al.  Problem difficulty of real instances of convoy planning , 2005, J. Oper. Res. Soc..

[3]  T. T. Narendran,et al.  Convoy Movement Problem – An Optimization Perspective , 2010 .

[4]  Virginia Vassilevska Efficient algorithms for clique problems , 2009 .

[5]  Hsiu-Chin Lin,et al.  On the formulation and solution of the convoy routing problem , 2010 .

[6]  S. A. Harrison Convoy Planning in a Digitized Battlespace , 2001 .

[7]  Hoong Chuin Lau,et al.  Distributed Route Planning and Scheduling via Hybrid Conflict Resolution , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[8]  Kalyan Mohanta,et al.  Comprehensive Study on Computational Methods for K-Shortest Paths Problem , 2012 .

[9]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[10]  Gordon Vidaver,et al.  Scheduling and route selection for military land moves using genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Ernst L. Leiss,et al.  Applying Genetic Algorithms to Convoy Scheduling , 2006, IFIP AI.

[12]  Tore Grünert,et al.  Finding all k-cliques in k-partite graphs, an application in textile engineering , 2002, Comput. Oper. Res..

[13]  Dominique de Werra,et al.  A convoy scheduling problem , 1991, Discret. Appl. Math..

[14]  Ram Gopalan,et al.  Computational complexity of convoy movement planning problems , 2015, Math. Methods Oper. Res..

[15]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[16]  T. T. Narendran,et al.  On the usage of Lagrangean Relaxation for the convoy movement problem , 2011, J. Oper. Res. Soc..

[17]  M. Pollack Letter to the Editor—The kth Best Route Through a Network , 1961 .

[18]  Virginia Vassilevska Williams,et al.  Efficient algorithms for clique problems , 2009, Inf. Process. Lett..

[19]  Marta M. B. Pascoal,et al.  A new implementation of Yen’s ranking loopless paths algorithm , 2003, 4OR.

[20]  Stuart E. Dreyfus,et al.  An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..

[21]  Pavlo A. Krokhmal,et al.  On finding k-cliques in k-partite graphs , 2013, Optim. Lett..

[22]  Pierre Chardaire,et al.  Solving a Time-Space Network Formulation for the Convoy Movement Problem , 2005, Oper. Res..

[23]  Liccardo Pacula,et al.  RAND Corporation , 2015 .

[24]  Martin W. P. Savelsbergh,et al.  A generic view of Dantzig-Wolfe decomposition in mixed integer programming , 2006, Oper. Res. Lett..

[25]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[26]  David Eppstein,et al.  Finding the k shortest paths , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[27]  J. Y. Yen,et al.  Finding the K Shortest Loopless Paths in a Network , 2007 .

[28]  N. S. Narayanaswamy,et al.  Analysis of algorithms for an online version of the convoy movement problem , 2009, J. Oper. Res. Soc..