Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae.

The genes of Saccharomyces cerevisiae coding for the mitochondrial threonine and tryptophan tRNA synthetases and for a putative mitochondrial ribosomal protein have been cloned. These, and the previously cloned gene for a mitochondrial elongation factor, were used to disrupt or partially delete the wild‐type chromosomal copies of the genes in the respiratory‐competent strain W303. In each case, inactivation of a gene whose product is required for mitochondrial protein synthesis causes an instability in mitochondrial DNA. Although intact mitochondrial genomes are rapidly and quantitatively eliminated in the protein synthesis defective strains, specific rho‐ genomes can be maintained stably over many generations. These results indicate that mitochondrial protein synthesis is required for the propagation of wild‐type mitochondrial DNA in yeast.

[1]  R. O. Poyton,et al.  Mitochondrial gene expression in saccharomyces cerevisiae. I. Optimal conditions for protein synthesis in isolated mitochondria. , 1984, The Journal of biological chemistry.

[2]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[3]  J. Messing,et al.  Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. , 1983, Gene.

[4]  M. Grunberg‐Manago,et al.  Structural and transcriptional evidence for related thrS and infC expression. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Nagata,et al.  Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[6]  B. Lang,et al.  Expression of the "split gene" cob in yeast mtDNA. Nuclear mutations specifically block the excision of different introns from its primary transcript. , 1983, The Journal of biological chemistry.

[7]  P. Perlman,et al.  [37] Genetics and biogenesis of cytochrome b , 1983 .

[8]  R. Rothstein One-step gene disruption in yeast. , 1983, Methods in enzymology.

[9]  S. Gasser,et al.  Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. , 1982, The Journal of biological chemistry.

[10]  J. Vieira,et al.  The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. , 1982, Gene.

[11]  D. Botstein,et al.  Lethal disruption of the yeast actin gene by integrative DNA transformation. , 1982, Science.

[12]  The nucleotide sequence of the structural gene for Escherichia coli tryptophanyl-tRNA synthetase. , 1982, The Journal of biological chemistry.

[13]  J W Szostak,et al.  Yeast transformation: a model system for the study of recombination. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Broach,et al.  The Molecular biology of the yeast saccharomyces, life cycle and inheritance , 1981 .

[15]  G. Coruzzi,et al.  Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase. , 1980, The Journal of biological chemistry.

[16]  P. Perlman,et al.  Mosaic organization of a mitochondrial gene: Evidence from double mutants in the cytochrome b region of Saccharomyces cerevisiae , 1980, Cell.

[17]  G. Macino,et al.  Assembly of the mitochondrial membrane system: isolation of mitochondrial transfer ribonucleic acid mutants and characterization of transfer ribonucleic acid genes of Saccharomyces cerevisiae , 1980, Journal of bacteriology.

[18]  J. Broach,et al.  Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. , 1979, Gene.

[19]  G. Macino,et al.  Mitochondrial genes and translation products. , 1979, Annual review of biochemistry.

[20]  G. Coruzzi,et al.  Assembly of the mitochondrial membrane system: mutations in the pho2 locus of the mitochondrial genome of Saccharomyces cerevisiae. , 1978, European journal of biochemistry.

[21]  G. Fink,et al.  Transformation of yeast. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Fink,et al.  A mutant of Saccharomyces cerevisiae defective for nuclear fusion. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[23]  F. Foury,et al.  Localization on mitochondrial DNA of mutations leading to a loss of rutamycin-sensitive adenosine triphosphatase. , 1976, European journal of biochemistry.

[24]  F. Foury,et al.  Assembly of the mitochondrial membrane system XVI. Modified form of the ATPase proteolipid in oligomycin‐resistant mutants of Saccharomyces cerevisiae , 1976, FEBS letters.

[25]  P. Slonimski,et al.  Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase. , 1976, European journal of biochemistry.

[26]  E. Southern Detection of specific sequences among DNA fragments separated by gel electrophoresis. , 1975, Journal of molecular biology.

[27]  A. Tzagoloff,et al.  Assembly of the mitochondrial membrane system. Characterization of nuclear mutants of Saccharomyces cerevisiae with defects in mitochondrial ATPase and respiratory enzymes. , 1975, Journal of Biological Chemistry.

[28]  B. Dujon,et al.  Mitochondrial genetics , 1973, Molecular and General Genetics MGG.

[29]  R. A. Butow,et al.  Low temperature and chloramphenicol induction of respiratory deficiency in a cold-sensitive mutant of Saccharomyces cerevisiae. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Ephrussi,et al.  Etudes Sur La SuppressivitE Des Mutants a Deficience Respiratoire De La Levure. II. Etapes De La Mutation Grande En Petite Provoquee Par Le Facteur Suppressif. , 1966 .