Miniaturized Fully Passive Brain Implant for Wireless Neuropotential Acquisition

We present an <inline-formula><tex-math notation="LaTeX">$8.7\ \text{mm} \times 10\ \text{mm}$</tex-math> </inline-formula> fully passive brain implant, capable of wireless acquisition of neuropotentials down to <inline-formula><tex-math notation="LaTeX">$20\, \mu \text{V}_{\rm{pp}}$</tex-math></inline-formula>, viz. three times lower than before. The implant receives a 2.4-GHz carrier signal from the external interrogator and mixes it with the neurosignals having a frequency of <inline-formula><tex-math notation="LaTeX">$f_{\rm{neuro}}$</tex-math> </inline-formula>. The mixing products (<inline-formula><tex-math notation="LaTeX">$4.8\ \text{GHz}\,\pm \, f_{\rm{neuro}}$</tex-math></inline-formula>) are then transmitted back to the external interrogator and further demodulated to retrieve <inline-formula><tex-math notation="LaTeX">$f_{\rm{neuro}}$</tex-math></inline-formula>. Previous work demonstrated a <inline-formula><tex-math notation="LaTeX">$15\ \text{mm} \times 16\ \text{mm}$</tex-math> </inline-formula> wireless and fully passive brain implant, capable of detecting emulated neuropotentials as low as <inline-formula><tex-math notation="LaTeX">$63\, \mu \text{V}_{\rm{pp}}$</tex-math></inline-formula>. In this letter, we present a new neurosensing system with the following improved features: 1) 63% smaller implant; 2) 98% smaller interrogator antenna; 3) compliance with the strictest Federal Communications Commission standards for patient safety; 4) elimination of lumped components within the implant to preserve biocompatibility; and 5) three-times sensitivity improvement. This high sensitivity implies reading of most neural signals generated by the human brain.

[1]  Junseok Chae,et al.  A Fully Passive Wireless Microsystem for Recording of Neuropotentials Using RF Backscattering Methods , 2011, Journal of Microelectromechanical Systems.

[2]  John L. Volakis,et al.  A High-Sensitivity Fully Passive Neurosensing System for Wireless Brain Signal Monitoring , 2015, IEEE Transactions on Microwave Theory and Techniques.

[3]  Lauri Sydanheimo,et al.  Measurement of Wireless Link for Brain–Machine Interface Systems Using Human-Head Equivalent Liquid , 2013, IEEE Antennas and Wireless Propagation Letters.

[4]  John L. Volakis,et al.  A Wireless Fully Passive Neural Recording Device for Unobtrusive Neuropotential Monitoring , 2016, IEEE Transactions on Biomedical Engineering.

[5]  B. Fuchs,et al.  The Effect of Insulating Layers on the Performance of Implanted Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[6]  Yao Lu,et al.  Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior , 2014, Neuron.

[7]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[8]  John L. Volakis,et al.  A high-sensitivity fully-passive wireless neurosensing system for unobtrusive brain signal monitoring , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[9]  G. Schalk,et al.  Brain-Computer Interfaces Using Electrocorticographic Signals , 2011, IEEE Reviews in Biomedical Engineering.

[10]  国際非電離放射線防護委員会 ICNIRP statement on the "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)". , 2009, Health physics.

[11]  Y. Rahmat-Samii,et al.  Implanted antennas inside a human body: simulations, designs, and characterizations , 2004, IEEE Transactions on Microwave Theory and Techniques.

[12]  R. Normann,et al.  Thermal Impact of an Active 3-D Microelectrode Array Implanted in the Brain , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[13]  Amir M. Sodagar,et al.  Microelectrodes, Microelectronics, and Implantable Neural Microsystems , 2008, Proceedings of the IEEE.

[14]  Reid R. Harrison,et al.  The Design of Integrated Circuits to Observe Brain Activity , 2008, Proceedings of the IEEE.