Optimized strength and conductivity of multi-scale copper alloy/metallic glass composites tuned by a one-step spark plasma sintering (SPS) process

[1]  M. Legan,et al.  Microstructure and properties of Cu-10 wt% Al bronze obtained by high-energy mechanical milling and spark plasma sintering , 2022, Materials letters (General ed.).

[2]  D. Ponge,et al.  Symbiotic crystal-glass alloys via dynamic chemical partitioning , 2021, Materials Today.

[3]  Xinyun Wang,et al.  Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles , 2021, Materials & Design.

[4]  Youtong Fang,et al.  CoTi precipitates: The key to high strength, high conductivity and good softening resistance in Cu-Co-Ti alloy , 2021 .

[5]  Dongdong Zhang,et al.  The effect of in situ nano-sized particle content on the properties of TiCx/Cu composites , 2020 .

[6]  Zaoli Zhang,et al.  Effect of TiB2 particle size on the material transfer behaviour of Cu–TiB2 composites , 2020 .

[7]  C. Shi,et al.  Effect of rare metal element interfacial modulation in graphene/Cu composite with high strength, high ductility and good electrical conductivity , 2020 .

[8]  J. Llorca,et al.  Interactions between basal dislocations and β1′ precipitates in Mg–4Zn alloy: Mechanisms and strengthening , 2020, 2001.04380.

[9]  N. Frage,et al.  Highly-doped Nd:YAG ceramics fabricated by conventional and high pressure SPS , 2019, Ceramics International.

[10]  A. Volinsky,et al.  Cr effects on the electrical contact properties of the Al2O3-Cu/15W composites , 2019, Nanotechnology Reviews.

[11]  A. Largeteau,et al.  Phase transformation of alumina induced by high pressure spark plasma sintering (HP-SPS) , 2019, Scripta Materialia.

[12]  J. Tao,et al.  Simultaneous achievement of high strength, excellent ductility, and good electrical conductivity in carbon nanotube/copper composites , 2018, Journal of Alloys and Compounds.

[13]  E. Lavernia,et al.  Bulk Cu-NbC nanocomposites with high strength and high electrical conductivity , 2018 .

[14]  P. Li,et al.  Duration of Thermal Stability and Mechanical Properties of Mg2Si/Cu Thermoelectric Joints , 2018, Journal of Electronic Materials.

[15]  Wenquan Wang,et al.  Grain Refinement and Mechanical Properties of Cu–Cr–Zr Alloys with Different Nano-Sized TiCp Addition , 2017, Materials.

[16]  L. Froyen,et al.  Novel processing of Ag-WC electrical contact materials using spark plasma sintering , 2017 .

[17]  Liping Sun,et al.  Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology , 2017, Materials.

[18]  K. Purazrang,et al.  Spark Plasma Sintering of Ultrafine YSZ Reinforced Cu Matrix Functionally Graded Composite , 2016, Acta Metallurgica Sinica (English Letters).

[19]  Weizhen Zeng,et al.  A feasible ultrafine grained Cu matrix composite microstructure for achieving high strength and high electrical conductivity , 2016 .

[20]  Yunping Li,et al.  In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling , 2016 .

[21]  Zhizhong Chen,et al.  Effect of Interface Evolution on Thermal Conductivity of Vacuum Hot Pressed SiC/Al Composites , 2015 .

[22]  R. Valiev,et al.  Nanostructured Al and Cu alloys with superior strength and electrical conductivity , 2015, Journal of Materials Science.

[23]  Hao Wang,et al.  Zr-based bulk metallic glass composite with in situ precipitated nanocrystals , 2014 .

[24]  G. Xie Spark Plasma Sintering: A Useful Technique to Develop Large-Sized Bulk Metallic Glasses , 2013 .

[25]  Yuanyuan Li,et al.  Effect of sintering temperature on the preparation of Cu–Ti3SiC2 metal matrix composite , 2013 .

[26]  Mingxing Zhang,et al.  Crystallographic features of phase transformations in solids , 2009 .

[27]  Hui Zhang,et al.  Hot deformation behavior of Cu–Fe–P alloys during compression at elevated temperatures , 2009 .

[28]  I. Lahiri,et al.  Compaction and sintering response of mechanically alloyed Cu-Cr powder , 2009 .

[29]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[30]  E. Pereloma,et al.  An alternative physical explanation of the Hall–Petch relation , 2004 .

[31]  M. Nygren,et al.  Formidable Increase in the Superplasticity of Ceramics in the Presence of an Electric Field , 2003 .

[32]  V. Mamedov,et al.  Spark plasma sintering as advanced PM sintering method , 2002 .

[33]  N. Hansen,et al.  The Strain and Grain Size Dependence of the Flow Stress of Copper , 1982 .