A method for convex minimization based on translated first-order approximations

We describe an algorithm for minimizing convex, not necessarily smooth, functions of several variables, based on a descent direction finding procedure that inherits some characteristics both of standard bundle method and of Wolfe’s conjugate subgradient method. This is obtained by allowing appropriate upward shifting of the affine approximations of the objective function which contribute to the classic definition of the cutting plane function. The algorithm embeds a proximity control strategy. Finite termination is proved at a point satisfying an approximate optimality condition and some numerical results are provided.

[1]  Nezam Mahdavi-Amiri,et al.  An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions , 2012, J. Optim. Theory Appl..

[2]  A. A. Goldstein,et al.  Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.

[3]  Krzysztof C. Kiwiel,et al.  A tilted cutting plane proximal bundle method for convex nondifferentiable optimization , 1991, Oper. Res. Lett..

[4]  Teodor Gabriel Crainic,et al.  Bundle-based relaxation methods for multicommodity capacitated fixed charge network design , 2001, Discret. Appl. Math..

[5]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[6]  V. F. Demʹi︠a︡nov,et al.  Introduction to minimax , 1976 .

[7]  P. Neittaanmäki,et al.  Nonsmooth Optimization Theory , 1992 .

[8]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  M. F. Monaco,et al.  Variants to the cutting plane approach for convex nondifferentiable optimization , 1992 .

[11]  P. Wolfe,et al.  A METHOD OF CONJUGATE SUBGRADIENTS FOR , 1975 .

[12]  Xiaojun Chen,et al.  Proximal quasi-Newton methods for nondifferentiable convex optimization , 1999, Math. Program..

[13]  Manlio Gaudioso,et al.  A bundle type approach to the unconstrained minimization of convex nonsmooth functions , 1982, Math. Program..

[14]  Antonio Fuduli,et al.  A bundle modification strategy for convex minimization , 2007, Eur. J. Oper. Res..

[15]  J. E. Kelley,et al.  The Cutting-Plane Method for Solving Convex Programs , 1960 .

[16]  Giovanna Miglionico,et al.  An Incremental Method for Solving Convex Finite Min-Max Problems , 2006, Math. Oper. Res..

[17]  Claude Lemaréchal,et al.  Convex proximal bundle methods in depth: a unified analysis for inexact oracles , 2014, Math. Program..

[18]  Jan Vlcek,et al.  A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..

[19]  A. Frangioni,et al.  On the Computational Efficiency of Subgradient Methods : A Case Study in Combinatorial Optimization , 2015 .

[20]  Annabella Astorino,et al.  Piecewise-quadratic Approximations in Convex Numerical Optimization , 2011, SIAM J. Optim..

[21]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[22]  Enrico Gorgone,et al.  Piecewise linear approximations in nonconvex nonsmooth optimization , 2009, Numerische Mathematik.

[23]  Antonio Fuduli,et al.  Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..

[24]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[25]  Antonio Fuduli,et al.  A partially inexact bundle method for convex semi-infinite minmax problems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[26]  Giovanna Miglionico,et al.  On solving the Lagrangian dual of integer programs via an incremental approach , 2009, Comput. Optim. Appl..

[27]  P. Wolfe Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .

[28]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[29]  C. Lemaréchal An extension of davidon methods to non differentiable problems , 1975 .

[30]  Annabella Astorino,et al.  A Nonmonotone Proximal Bundle Method with (Potentially) Continuous Step Decisions , 2013, SIAM J. Optim..

[31]  Adil M. Bagirov,et al.  Comparing different nonsmooth minimization methods and software , 2012, Optim. Methods Softw..

[32]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[33]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[34]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[35]  Antonio Frangioni,et al.  Bundle methods for sum-functions with “easy” components: applications to multicommodity network design , 2013, Mathematical Programming.

[36]  Robert Mifflin,et al.  An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..