Quantum Serial Turbo Codes
暂无分享,去创建一个
David Poulin | Jean-Pierre Tillich | Harold Ollivier | J. Tillich | D. Poulin | Harold Ollivier | David Poulin
[1] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[2] Steane,et al. Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[3] D. Poulin,et al. Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.
[4] Hideki Imai,et al. Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.
[5] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[6] Markus Grassl,et al. Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.
[7] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[8] D. Poulin,et al. Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs , 2007, 0710.4304.
[9] Raymond Laflamme,et al. A Theory of Quantum Error-Correcting Codes , 1996 .
[10] Pradeep Kiran Sarvepalli,et al. On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.
[11] Panos Aliferis,et al. Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.
[12] R. Urbanke,et al. On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[13] David Poulin,et al. On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..
[14] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[15] M. Opper,et al. Advanced mean field methods: theory and practice , 2001 .
[16] C. H. Bennett,et al. Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.
[17] J. Tillich,et al. Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.
[18] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[19] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[20] M. Opper,et al. An Idiosyncratic Journey Beyond Mean Field Theory , 2001 .
[21] J. Garcia-Frías,et al. On the Application of Error-Correcting Codes with Low-Density Generator Matrix over Different Quantum Channels , 2006 .
[22] Dariush Divsalar,et al. Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.
[23] Elwyn R. Berlekamp,et al. On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[24] David Poulin. Optimal and efficient decoding of concatenated quantum block codes , 2006 .
[25] Jean-Pierre Tillich,et al. Description of a quantum convolutional code. , 2003, Physical review letters.
[26] P. Shor,et al. QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.
[27] Martin Rötteler,et al. Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.
[28] John A. Smolin,et al. Degenerate coding for Pauli channels , 2006 .
[29] H. F. Chau. Good quantum-convolutional error-correction codes and their decoding algorithm exist , 1999 .
[30] Jean-Pierre Tillich,et al. A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.
[31] Yuhong Yang,et al. Information Theory, Inference, and Learning Algorithms , 2005 .
[32] S. Lloyd. Capacity of the noisy quantum channel , 1996, quant-ph/9604015.
[33] S. Sondhi,et al. Cavity method for quantum spin glasses on the Bethe lattice , 2007, 0706.4391.
[34] Steane,et al. Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.
[35] Stephan ten Brink,et al. Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2001 .
[36] M. Hastings. Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.
[37] Shor,et al. Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[38] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[39] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[40] Jean-Pierre Tillich,et al. Trellises for stabilizer codes: Definition and uses , 2006 .
[41] Gustav Fischer Verlag. Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2000 .
[42] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[43] Dwijendra K. Ray-Chaudhuri,et al. Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.
[44] F. Pollara,et al. Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.
[45] David Poulin,et al. Quantum serial turbo codes , 2009, IEEE Trans. Inf. Theory.
[46] H. Ollivier,et al. Quantum convolutional codes: fundamentals , 2004 .
[47] Igor Devetak. The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.
[48] D. Poulin. Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.