Quantum Serial Turbo Codes

In this paper, we present a theory of quantum serial turbo codes, describe their iterative decoding algorithm, and study their performances numerically on a depolarization channel. Our construction offers several advantages over quantum low-density parity-check (LDPC) codes. First, the Tanner graph used for decoding is free of 4-cycles that deteriorate the performances of iterative decoding. Second, the iterative decoder makes explicit use of the code's degeneracy. Finally, there is complete freedom in the code design in terms of length, rate, memory size, and interleaver choice. We define a quantum analogue of a state diagram that provides an efficient way to verify the properties of a quantum convolutional code, and in particular, its recursiveness and the presence of catastrophic error propagation. We prove that all recursive quantum convolutional encoders have catastrophic error propagation. In our constructions, the convolutional codes have thus been chosen to be noncatastrophic and nonrecursive. While the resulting families of turbo codes have bounded minimum distance, from a pragmatic point of view, the effective minimum distances of the codes that we have simulated are large enough not to degrade the iterative decoding performance up to reasonable word error rates and block sizes. With well-chosen constituent convolutional codes, we observe an important reduction of the word error rate as the code length increases.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  D. Poulin,et al.  Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.

[4]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[6]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[7]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[8]  D. Poulin,et al.  Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs , 2007, 0710.4304.

[9]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[10]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[11]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[12]  R. Urbanke,et al.  On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[13]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[16]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[17]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[18]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  M. Opper,et al.  An Idiosyncratic Journey Beyond Mean Field Theory , 2001 .

[21]  J. Garcia-Frías,et al.  On the Application of Error-Correcting Codes with Low-Density Generator Matrix over Different Quantum Channels , 2006 .

[22]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[23]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[24]  David Poulin Optimal and efficient decoding of concatenated quantum block codes , 2006 .

[25]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[26]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[27]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[28]  John A. Smolin,et al.  Degenerate coding for Pauli channels , 2006 .

[29]  H. F. Chau Good quantum-convolutional error-correction codes and their decoding algorithm exist , 1999 .

[30]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[31]  Yuhong Yang,et al.  Information Theory, Inference, and Learning Algorithms , 2005 .

[32]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[33]  S. Sondhi,et al.  Cavity method for quantum spin glasses on the Bethe lattice , 2007, 0706.4391.

[34]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[35]  Stephan ten Brink,et al.  Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2001 .

[36]  M. Hastings Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.

[37]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[39]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  Jean-Pierre Tillich,et al.  Trellises for stabilizer codes: Definition and uses , 2006 .

[41]  Gustav Fischer Verlag Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2000 .

[42]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[43]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[44]  F. Pollara,et al.  Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.

[45]  David Poulin,et al.  Quantum serial turbo codes , 2009, IEEE Trans. Inf. Theory.

[46]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[47]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[48]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.