Identification of Space-Time Distributed Parameters in the Gierer-Meinhardt Reaction-Diffusion System

We consider parameter identification for the classic Gierer--Meinhardt reaction-diffusion system. The original Gierer--Meinhardt model [A. Gierer and H. Meinhardt, Kybernetik, 12 (1972), pp. 30--39] was formulated with constant parameters and has been used as a prototype system for investigating pattern formation in developmental biology. In our paper the parameters are extended in time and space and used as distributed control variables. The methodology employs PDE-constrained optimization in the context of image-driven spatiotemporal pattern formation. We prove the existence of optimal solutions, derive an optimality system, and determine optimal solutions. The results of numerical experiments in two dimensions are presented using the finite element method, which illustrates the convergence of a variable-step gradient algorithm for finding the optimal parameters of the system. A practical target function is constructed for the optimal control algorithm corresponding to the actual image of a marine angel...

[1]  Fredi Tröltzsch,et al.  Sufficient Second-Order Optimality Conditions for Semilinear Control Problems with Pointwise State Constraints , 2008, SIAM J. Optim..

[2]  Maeve L. McCarthy,et al.  The Identification of a Time Dependent Sorption Parameter from Soil Column Experiments , 2006, SIAM J. Appl. Math..

[3]  Ahmed A. Al Ghafli,et al.  An improved error bound for a finite element approximation of a reaction-diffusion system of λ-ω type , 2014, Appl. Math. Comput..

[4]  IDENTIFICATION OF CONSTANT PARAMETERS IN PERTURBED SINE-GORDON EQUATIONS , 2006 .

[5]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[6]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[7]  P. Maini,et al.  Pattern formation in spatially heterogeneous Turing reaction–diffusion models , 2003 .

[8]  P. Maini,et al.  Analysis of pattern formation in reaction diffusion models with spatially inhomogenous diffusion coefficients , 1993 .

[9]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[10]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[11]  A reaction-diffusion system of $\lambda$–$\omega$ type Part II: Numerical analysis , 2005, European Journal of Applied Mathematics.

[12]  K. Kunisch,et al.  Parameter estimation in a special reaction-diffusion system modelling man-environment diseases , 1989, Journal of mathematical biology.

[13]  Philip K. Maini,et al.  An efficient and robust numerical algorithm for estimating parameters in Turing systems , 2010, J. Comput. Phys..

[14]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[15]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[16]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[17]  Maeve L. McCarthy,et al.  Identification of a chemotactic sensitivity in a coupled system. , 2007, Mathematical medicine and biology : a journal of the IMA.

[18]  Fredi Tröltzsch,et al.  SUFFICIENT OPTIMALITY IN A PARABOLIC CONTROL PROBLEM , 2002 .

[19]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[20]  Christos Davatzikos,et al.  An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects , 2008, Journal of mathematical biology.

[21]  Parameter estimation in nonlinear evolution equations , 1998 .

[22]  Herbert Amann,et al.  Global existence for semilinear parabolic systems. , 1985 .

[23]  Stefan Volkwein,et al.  Parametric Sensitivity Analysis for Optimal Boundary Control of a 3D Reaction-Diffusion System , 2006 .

[24]  Xuecheng Tai,et al.  Parameter Estimation with the Augmented Lagrangian Method for a Parabolic Equation , 2005 .

[25]  Marcus R. Garvie,et al.  Numerische Mathematik Finite element approximation of spatially extended predator – prey interactions with the Holling type II functional response , 2007 .

[26]  Max Gunzburger,et al.  The Velocity Tracking Problem for Navier--Stokes Flows with Bounded Distributed Controls , 1999 .

[27]  Xuecheng Tai,et al.  Permeability Estimation with the Augmented Lagrangian Method for a Nonlinear Diffusion Equation , 2003 .

[28]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[29]  Jonathan A. Sherratt,et al.  Turing bifurcations with a temporally varying diffusion coefficient , 1995 .

[30]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[31]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[32]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Ben G. Fitzpatrick,et al.  Estimation of discontinuous parameters in general nonautonomous parabolic systems , 1996, Kybernetika.

[35]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[36]  Ben G. Fitzpatrick,et al.  Estimation of time dependent parameters in general parabolic evolution systems , 1996 .

[37]  Approximating parameters in nonlinear reaction diffusion equations. , 2001 .

[38]  Marcus R. Garvie,et al.  Optimal Control of a Nutrient-Phytoplankton-Zooplankton-Fish System , 2007, SIAM J. Control. Optim..

[39]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[40]  J. Murray,et al.  Parameter space for turing instability in reaction diffusion mechanisms: a comparison of models. , 1982, Journal of theoretical biology.

[41]  Stefan Volkwein,et al.  A Primal-Dual Active Set Strategy for Optimal Boundary Control of a Nonlinear Reaction-Diffusion System , 2005, SIAM J. Control. Optim..

[42]  Sabine Fenstermacher,et al.  Estimation Techniques For Distributed Parameter Systems , 2016 .

[43]  Harald Garcke,et al.  On Fully Practical Finite Element Approximations of Degenerate Cahn-Hilliard Systems , 2001 .

[44]  A. Ōkubo,et al.  Diffusion-driven instability in a predator-prey system with time-varying diffusivities , 1992 .

[45]  V. Tikhomirov,et al.  Fundamental principles of the theory of extremal problems , 1986 .

[46]  P. Maini,et al.  Complex pattern formation in reaction–diffusion systems with spatially varying parameters , 2005 .

[47]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[48]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[49]  P. Maini,et al.  Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients , 1992 .

[50]  J. F. Blowey,et al.  A reaction-diffusion system of λ-ω type Part II: Numerical analysis , 2005 .

[51]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[52]  E. Casas Pontryagin's Principle for State-Constrained Boundary Control Problems of Semilinear Parabolic Equations , 1997 .

[53]  N. U. Ahmed,et al.  Parameter identification for partially observed diffusions , 1992 .

[54]  Andrew C. Fowler,et al.  Mathematical Models in the Applied Sciences , 1997 .

[55]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[56]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[57]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[58]  J. Sherratt,et al.  Oscillatory reaction-diffusion equations with temporally varying parameters , 2004 .

[59]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[60]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[61]  Jean-Pierre Raymond,et al.  Hamiltonian Pontryagin's Principles for Control Problems Governed by Semilinear Parabolic Equations , 1999 .

[62]  John T. Workman,et al.  Optimal Control Applied to Biological Models , 2007 .

[63]  Harvey Thomas Banks,et al.  An approximation theory for the identification of nonlinear distributed parameter systems , 1990 .

[64]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[65]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[66]  Daizhan Cheng,et al.  Parameter identification for a class of abstract nonlinear parabolic distributed parameter systems , 2004 .

[67]  P. Neittaanmäki,et al.  Numerical methods for nonlinear inverse problems , 1996 .