Group theoretic structures in the estimation of an unknown unitary transformation

This paper presents a series of general results about the optimal estimation of physical transformations in a given symmetry group. In particular, it is shown how the different symmetries of the problem determine different properties of the optimal estimation strategy. The paper also contains a discussion about the role of entanglement between the representation and multiplicity spaces and about the optimality of square-root measurements.

[1]  G. D’Ariano,et al.  Bell measurements and observables , 2000, quant-ph/0005121.

[2]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[3]  S. Griffis EDITOR , 1997, Journal of Navigation.

[4]  C. Helstrom Quantum detection and estimation theory , 1969 .

[5]  G. M. D'Ariano,et al.  MAXIMUM LIKELIHOOD ESTIMATION FOR A GROUP OF PHYSICAL TRANSFORMATIONS , 2005, quant-ph/0507007.

[6]  G. Folland A course in abstract harmonic analysis , 1995 .

[7]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[8]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[9]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[10]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[11]  Michael Martin Nieto,et al.  Coherent States , 2009, Compendium of Quantum Physics.

[12]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[13]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[14]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[15]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[16]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[17]  V. P. Maslov,et al.  MATHEMATICAL ASPECTS OF COMPUTER ENGINEERING Advances in Science and Technology in the USSR Design of Optimal Dynamic Analyzers: Mathematical Aspects of Wave Pattern Recognition , 1988 .

[18]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[19]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.