Ozone and Ultraviolet Radiation Lead Authors

[1]  GLOBAL ATMOSPHERE WATCH No . 125 Instruments to measure solar ultraviolet radiation Part 1 : Spectral instruments , 2018 .

[2]  M. Dameris,et al.  Relationship between North Atlantic Oscillation changes and stratospheric ozone recovery in the Northern Hemisphere in a chemistry‐climate model , 2003 .

[3]  Frank J. Murcray,et al.  Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization , 2003 .

[4]  Martyn P. Chipperfield,et al.  Arctic ozone loss and climate change , 2004 .

[5]  Advances in UV Ground- and Space-based Measurements and Modeling , 2002 .

[6]  Arve Kylling,et al.  Measuring Spectral Actinic Flux and Irradiance: Experimental Results from the Actinic Flux Determination from Measurements of Irradiance (ADMIRA) Project , 2002 .

[7]  D. Shindell,et al.  Separating the influence of halogen and climate changes on ozone recovery in the upper stratosphere , 2002 .

[8]  Glenn E. Shaw,et al.  A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska , 2002 .

[9]  Lars Olof Björn,et al.  Toward Solving the UV Puzzle , 2002, Science.

[10]  Robert S. Stone,et al.  Earlier spring snowmelt in northern Alaska as an indicator of climate change , 2002 .

[11]  A. Douglass,et al.  The Impact of Increasing Carbon Dioxide on Ozone Recovery , 2002 .

[12]  Volker Grewe,et al.  Interaction of atmospheric chemistry and climate and its impact on stratospheric ozone , 2002 .

[13]  P. Koepke,et al.  Future UV radiation in Central Europe modelled from ozone scenarios. , 2001, Journal of photochemistry and photobiology. B, Biology.

[14]  Drew T. Shindell,et al.  Climate and ozone response to increased stratospheric water vapor , 2001 .

[15]  M. McCormick,et al.  Stratospheric water vapor increases over the past half‐century , 2001 .

[16]  Darryn W. Waugh,et al.  Is upper stratospheric chlorine decreasing as expected? , 2001 .

[17]  S. Voigt,et al.  Effective albedo derived from UV measurements in the Swiss Alps , 2001 .

[18]  James B. Kerr,et al.  Detecting the recovery of total column ozone , 2000 .

[19]  James B. Kerr,et al.  Validation of an UV inversion algorithm using satellite and surface measurements , 2000 .

[20]  Costas A. Varotsos,et al.  Match observations in the Arctic winter 1996/97: High stratospheric ozone loss rates correlate with low temperatures deep inside the polar vortex , 2000 .

[21]  M. Rummukainen,et al.  Chemical Ozone Loss in the Arctic Winter 1994/95 as Determined by the Match Technique , 1999 .

[22]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .

[23]  David Rind,et al.  Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations , 1998, Nature.

[24]  Costas A. Varotsos,et al.  In situ measurements of stratospheric ozone depletion rates in the Arctic winter 1991/1992: A Lagrangian approach , 1998 .

[25]  F. Gruijl,et al.  Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements , 1996, Nature.

[26]  J. Russell,et al.  Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget , 1996, Nature.

[27]  G. Shaw The Arctic Haze Phenomenon , 1995 .

[28]  U. Schmidt,et al.  In situ measurements of carbon dioxide in the winter Arctic vortex and at midlatitudes: An indicator of the ‘age’ of stratopheric air , 1991 .

[29]  D. Sliney Estimating the solar ultraviolet radiation exposure to an intraocular lens implant , 1987, Journal of cataract and refractive surgery.

[30]  D H Sliney,et al.  Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature. , 1986, Investigative ophthalmology & visual science.

[31]  G. Shaw On the climatic relevancy of Arctic Haze: static energy balance considerations , 1985 .

[32]  G. Reid The middle atmosphere , 1979 .

[33]  K. Baker,et al.  PENETRATION OF UV‐B AND BIOLOGICALLY EFFECTIVE DOSE‐RATES IN NATURAL WATERS * , 1979 .