Modeling of biocatalytic reactions: A workflow for model calibration, selection, and validation using Bayesian statistics

We present a workflow for kinetic modeling of biocatalytic reactions which combines methods from Bayesian learning and uncertainty quantification for model calibration, model selection, evaluation, and model reduction in a consistent statistical framework. Our workflow is particularly tailored to sparse data settings in which a considerable variability of the parameters remains after the models have been adapted to available data, a ubiquitous problem in many real‐world applications. Our workflow is exemplified on an enzyme‐catalyzed two‐substrate reaction mechanism describing the symmetric carboligation of 3,5‐dimethoxy‐benzaldehyde to (R )‐3,3′,5,5′‐tetramethoxybenzoin catalyzed by benzaldehyde lyase from Pseudomonas fluorescens . Results indicate a substrate‐dependent inactivation of enzyme, which is in accordance with other recent studies.

[1]  Patrick C. F. Buchholz,et al.  Progress Curve Analysis Within BioCatNet: Comparing Kinetic Models for Enzyme-Catalyzed Self-Ligation. , 2018, Biotechnology journal.

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  W. Cleland,et al.  The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. , 1963, Biochimica et biophysica acta.

[4]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[5]  Luis A. Escobar,et al.  Teaching about Approximate Confidence Regions Based on Maximum Likelihood Estimation , 1995 .

[6]  Jens Timmer,et al.  Profile likelihood in systems biology , 2013, The FEBS journal.

[7]  Donna G Blackmond Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. , 2005, Angewandte Chemie.

[8]  Jens Timmer,et al.  An error model for protein quantification , 2007, Bioinform..

[9]  M. Olayioye,et al.  The tumor suppressor protein DLC1 maintains protein kinase D activity and Golgi secretory function , 2018, The Journal of Biological Chemistry.

[10]  P. Diaconis The Distribution of Leading Digits and Uniform Distribution Mod 1 , 1977 .

[11]  Wolfgang Marquardt,et al.  Mechanistic kinetic model for symmetric carboligations using benzaldehyde lyase , 2008, Biotechnology and bioengineering.

[12]  Nicole Radde,et al.  A computational model of PKD and CERT interactions at the trans-Golgi network of mammalian cells , 2015, BMC Systems Biology.

[13]  A. Spiess,et al.  Simultaneous identification of reaction and inactivation kinetics of an enzyme‐catalyzed carboligation , 2018, Biotechnology progress.

[14]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[15]  Dirk Husmeier,et al.  Improving the identification of antigenic sites in the H1N1 influenza virus through accounting for the experimental structure in a sparse hierarchical Bayesian model , 2019, Journal of the Royal Statistical Society. Series C, Applied statistics.

[16]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[17]  Nicole Radde,et al.  mcmc_clib-an advanced MCMC sampling package for ode models , 2014, Bioinform..

[18]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[19]  P. Rogers,et al.  Role of pyruvate in enhancing pyruvate decarboxylase stability towards benzaldehyde. , 2005, Journal of biotechnology.

[20]  J. Timmer,et al.  Addressing parameter identifiability by model-based experimentation. , 2011, IET systems biology.

[21]  P. Rogers,et al.  (R)-phenylacetylcarbinol production in aqueous/organic two-phase systems using partially purified pyruvate decarboxylase from Candida utilis. , 2005, Biotechnology and bioengineering.

[22]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[23]  Tom Misteli,et al.  Computational Cell Biology , 2018, Methods in Molecular Biology.

[24]  Christian P. Robert,et al.  Accelerating MCMC algorithms , 2018, Wiley interdisciplinary reviews. Computational statistics.

[25]  Bradley Efron,et al.  Bayesian inference and the parametric bootstrap. , 2012, The annals of applied statistics.

[26]  T. Luzyanina,et al.  Markov Chain Monte Carlo Parameter Estimation of the ODE Compartmental Cell Growth Model , 2018, Mathematical Biology and Bioinformatics.

[27]  P. Kügler,et al.  Parameter identification for chemical reaction systems using sparsity enforcing regularization: a case study for the chlorite-iodide reaction. , 2009, The journal of physical chemistry. A.

[28]  Åsa Johansson,et al.  Corrigendum: 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function , 2017, Scientific Reports.

[29]  Clemens Kreutz,et al.  New Concepts for Evaluating the Performance of Computational Methods , 2016 .

[30]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[31]  Nicole Radde,et al.  Trajectory-oriented Bayesian experiment design versus Fisher A-optimal design: an in depth comparison study , 2012, Bioinform..

[32]  H. Akaike A new look at the statistical model identification , 1974 .

[33]  Julio R. Banga,et al.  Benchmarking optimization methods for parameter estimation in large kinetic models , 2018, bioRxiv.

[34]  Fabian J. Theis,et al.  Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems , 2015, Bioinform..

[35]  D Joubert,et al.  Observability of Complex Systems: Finding the Gap , 2017, Scientific Reports.

[36]  Jens Timmer,et al.  Data-based identifiability analysis of non-linear dynamical models , 2007, Bioinform..

[37]  Rafiqul Gani,et al.  A robust methodology for kinetic model parameter estimation for biocatalytic reactions , 2012, Biotechnology progress.

[38]  P. Rogers,et al.  Comparative studies on enzyme preparations and role of cell components for (R)‐phenylacetylcarbinol production in a two‐phase biotransformation , 2006, Biotechnology and bioengineering.

[39]  Lee A. Segel,et al.  Modeling Dynamic Phenomena in Molecular and Cellular Biology , 1984 .

[40]  Martina Pohl,et al.  Development of a donor-acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. , 2002, Journal of the American Chemical Society.

[41]  Wolfgang Marquardt,et al.  Model-Based Experimental Analysis of Kinetic Phenomena in Multi-Phase Reactive Systems , 2005 .

[42]  Nicole Radde,et al.  Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems , 2014, BMC Bioinformatics.