Spiropyran Mechano-Activation in Model Silica-Filled Elastomer Nanocomposites Reveals How Macroscopic Stress in Uniaxial Tension Transfers from Filler/Filler Contacts to Highly Stretched Polymer Strands

[1]  P. Cassagnau,et al.  In-situ coupled mechanical/electrical investigations of EPDM/CB composite materials: The electrical signature of the mechanical Mullins effect , 2021, Composites Science and Technology.

[2]  H. Jinnai,et al.  Nanoscale Stress Distribution in Silica-Nanoparticle-Filled Rubber as Observed by Transmission Electron Microscopy: Implications for Tire Application , 2021 .

[3]  Yangju Lin,et al.  Onset of Mechanochromic Response in the High Strain Rate Uniaxial Compression of Spiropyran Embedded Silicone Elastomers. , 2020, Macromolecular rapid communications.

[4]  Tasuku Nakajima,et al.  Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission through Mechanoradical Polymerization , 2020 .

[5]  Yinjun Chen,et al.  From force-responsive molecules to quantifying and mapping stresses in soft materials , 2020, Science Advances.

[6]  Tae Ann Kim,et al.  Interfacial Force‐Focusing Effect in Mechanophore‐Linked Nanocomposites , 2020, Advanced science.

[7]  H. Proudhon,et al.  Temperature and aging dependence of strain‐induced crystallization and cavitation in highly crosslinked and filled natural rubber , 2019, Journal of Polymer Science Part B: Polymer Physics.

[8]  N. Sottos,et al.  Strain and stress mapping by mechanochemical activation of spiropyran in poly(methyl methacrylate) , 2019, Strain.

[9]  E. Dalcanale,et al.  Strain Field Self-Diagnostic Poly(dimethylsiloxane) Elastomers , 2017 .

[10]  R. Sijbesma,et al.  Covalent Bond Scission in the Mullins Effect of a Filled Elastomer: Real‐Time Visualization with Mechanoluminescence , 2016 .

[11]  J. Oberdisse,et al.  Recent advances in structural and dynamical properties of simplified industrial nanocomposites , 2016, 1811.08158.

[12]  Costantino Creton,et al.  Toughening Elastomers with Sacrificial Bonds and Watching Them Break , 2014, Science.

[13]  D. Long,et al.  Reinforcement in Natural Rubber Elastomer Nanocomposites: Breakdown of Entropic Elasticity , 2013 .

[14]  Huan Zhang,et al.  Mechanoresponsive Healable Metallosupramolecular Polymers , 2013 .

[15]  S. Roux,et al.  Opening and Closing of Nanocavities under Cyclic Loading in a Soft Nanocomposite Probed by Real-Time Small-Angle X-ray Scattering , 2013 .

[16]  François Hild,et al.  A critical local energy release rate criterion for fatigue fracture of elastomers , 2011 .

[17]  F. Lequeux,et al.  Nonlinear Rheology of Model Filled Elastomers , 2010 .

[18]  S. Gherib,et al.  Influence of the filler type on the rupture behavior of filled elastomers , 2010 .

[19]  Mary M. Caruso,et al.  Mechanically-induced chemical changes in polymeric materials. , 2009, Chemical reviews.

[20]  Pierre Gilormini,et al.  Author manuscript, published in "European Polymer Journal (2009) 601-612" A review on the Mullins ’ effect , 2022 .

[21]  J. Ramier,et al.  In situ SALS and volume variation measurements during deformation of treated silica filled SBR , 2007 .

[22]  C. Fretigny,et al.  Particle structuring under the effect of an uniaxial deformation in soft/hard nanocomposites , 2007, The European physical journal. E, Soft matter.

[23]  E. B. Orler,et al.  Stress softening experiments in silica-filled polydimethylsiloxane provide insight into a mechanism for the Mullins effect , 2005 .

[24]  T. Witten,et al.  Reinforcement of rubber by fractal aggregates , 1993 .

[25]  Shlomo Havlin,et al.  Topological properties of diffusion limited aggregation and cluster-cluster aggregation , 1984 .

[26]  L. Mullins,et al.  Theoretical Model for the Elastic Behavior of Filler-Reinforced Vulcanized Rubbers , 1957 .

[27]  L. Nielsen Simple theory of stress-strain properties of filled polymers† , 1966 .