Eddy-current signal analysis and inversion for semielliptical surface cracks

A scalar potential formulation of the δZ formula for the change in impedance of an eddy-current probe caused by a surface-breaking flaw is developed. The resulting formula is evaluated using a finite-difference method, which permits calculation of δZ for semielliptical flaws. The numerical results are checked by comparing calculations for rectangular-shaped flaws to previous calculations using an analytical solution for this geometry. Theoretical results are then verified by comparison with measurements on semielliptical fatigue cracks and EDM notches in aluminum alloy specimens using air-core eddy-current probes. An inversion method that compares features of the flaw profile, obtained by scanning the eddy-current probe along the length of the flaw, to a theoretical inversion chart (McFetridge chart) is demonstrated using the experimental data.