Generating synthetic contrast enhancement from non-contrast chest computed tomography using a generative adversarial network

[1]  Cihan Duzgol,et al.  DyeFreeNet: Deep Virtual Contrast CT Synthesis , 2020, SASHIMI@MICCAI.

[2]  Richard J. Chen,et al.  EndoL2H: Deep Super-Resolution for Capsule Endoscopy , 2020, IEEE Transactions on Medical Imaging.

[3]  O. Abe,et al.  Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans. , 2020, Investigative radiology.

[4]  Ke Yan,et al.  Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks , 2019, Scientific Reports.

[5]  Rosewinter Kodzwa,et al.  ACR Manual on Contrast Media: 2018 Updates. , 2019, Radiologic technology.

[6]  Li Feng,et al.  SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction , 2018, ArXiv.

[7]  Paul Babyn,et al.  Generative Adversarial Network in Medical Imaging: A Review , 2018, Medical Image Anal..

[8]  Carsten Rother,et al.  Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. , 2019, Investigative radiology.

[9]  J. Pauly,et al.  Deep learning enables reduced gadolinium dose for contrast‐enhanced brain MRI , 2018, Journal of magnetic resonance imaging : JMRI.

[10]  Andrea Leo,et al.  Synthetic contrast enhancement in cardiac CT with Deep Learning , 2018, ArXiv.

[11]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  S. Park,et al.  Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. , 2018, Radiology.

[13]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[14]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Vincent Dumoulin,et al.  Deconvolution and Checkerboard Artifacts , 2016 .

[16]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[17]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[18]  Matthias Bethge,et al.  A note on the evaluation of generative models , 2015, ICLR.

[19]  Jessica M. Langer,et al.  Safe Use of Contrast Media: What the Radiologist Needs to Know. , 2015, Radiographics : a review publication of the Radiological Society of North America, Inc.

[20]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  Janet M. Busey,et al.  Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. , 2014, AJR. American journal of roentgenology.

[23]  D. Chakraborty,et al.  Recent developments in imaging system assessment methodology, FROC analysis and the search model. , 2011, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment.

[24]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[25]  Zhou Wang,et al.  Multiscale structural similarity for image quality assessment , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[26]  D C Schoen,et al.  Data analysis and interpretation. , 1989, Orthopedic nursing.