Nod-shuffle 3D spectroscopy with PMAS

PMAS is a versatile integral field spectrograph based on the principle of a fiber-coupled lens array type of IFU. The instrument was commissioned at the Calar Alto 3.5m Telescope in May 2001. PMAS is offered as a common user instrument at Calar Alto since 2002. However, it has remained flexible enough to be used as a testbed for new observing techniques. Since the instrument is sensitive in the wavelength range from 0.35 to 1 μm, it is being used to experiment with faint object 3D spectroscopy for a variety of objects in stellar and extragalactic astronomy. Among these experiments, we have implemented a nod-shuffle mode of operation, which is a beam switching technique to achieve a high degree of sky subtraction accuracy. We describe the technical details of the special solution found for PMAS and first results obtained in test observations of faint haloes of planetary nebulae.

[1]  A. Kelz,et al.  Ultra-Deep Optical Spectroscopy with PMAS. Using the Nod-and-Shuffle Technique , 2002 .

[2]  Waters,et al.  The Disk Mass project ; science case for a new PMAS IFU module , 2003 .

[3]  Andreas Kelz,et al.  PMAS design and integration , 2000, Astronomical Telescopes and Instrumentation.

[4]  K. Jahnke,et al.  Integral field observations of damped Lyman‐α galaxies , 2004, astro-ph/0401053.

[5]  M. Roth,et al.  Crowded Field 3D Spectroscopy , 2003, astro-ph/0311315.

[6]  Uwe Laux,et al.  PMAS fiber spectrograph: design, manufacture, and performance , 2000, Astronomical Telescopes and Instrumentation.

[7]  M. Roth,et al.  Crowded Field 3 D Spectroscopy , 2022 .

[8]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.

[9]  Juergen Schmoll,et al.  PMAS -- the Potsdam multiaperture spectrophotometer: a progress report , 1998, Astronomical Telescopes and Instrumentation.

[10]  M. Roth,et al.  Faint Object 2-D Spectroscopy: Promise and Limitations , 2000 .

[11]  B. T.,et al.  Science Verification Results from Pmas , 2003 .

[12]  A. Kelz,et al.  Spectrophotometry of Planetary Nebulae in the Bulge of M31 , 2003, astro-ph/0311407.

[13]  K. Jahnke,et al.  Integral field spectrophotometry of gravitationally lensed QSOs with PMAS , 2004 .

[14]  Andreas Kelz,et al.  Commissioning of the PMAS 3D-spectrograph , 2003, SPIE Astronomical Telescopes + Instrumentation.

[15]  Kenneth R. Sembach,et al.  Accurate sky Subtraction of Long-Slit Spectra: Velocity Dispersions at Sigma(v) = 24.0 Mag/arcsec^2 , 1996 .

[16]  H Germany,et al.  Integral field spectroscopy of QSO host galaxies , 2003, astro-ph/0311208.

[17]  Roland Bacon,et al.  MUSE: a second-generation integral-field spectrograph for the VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[18]  Andreas Kelz,et al.  PMAS telescope module: optomechanical design and manufacture , 2003, SPIE Astronomical Telescopes + Instrumentation.

[19]  Integral field spectroscopy of extended Lyα emission from the DLA galaxy in Q2233+131 , 2004, astro-ph/0401051.

[20]  Svend-Marian Bauer,et al.  Design study for the Potsdam Multiaperture Spectrophotometer (PMAS) , 1997, Other Conferences.

[21]  Andreas Kelz,et al.  PMAS fiber module: design, manufacture, and performance optimization , 2003, SPIE Astronomical Telescopes + Instrumentation.