Sequential estimation of temporally evolving latent space network models

In this article we focus on dynamic network data which describe interactions among a fixed population through time. We model this data using the latent space framework, in which the probability of a connection forming is expressed as a function of low-dimensional latent coordinates associated with the nodes, and consider sequential estimation of model parameters via Sequential Monte Carlo (SMC) methods. In this setting, SMC is a natural candidate for estimation which offers greater scalability than existing approaches commonly considered in the literature, allows for estimates to be conveniently updated given additional observations and facilitates both online and offline inference. We present a novel approach to sequentially infer parameters of dynamic latent space network models by building on techniques from the high-dimensional SMC literature. Furthermore, we examine the scalability and performance of our approach via simulation, demonstrate the flexibility of our approach to model variants and analyse a real-world dataset describing classroom contacts.

[1]  Nicholas G. Polson,et al.  Practical filtering with sequential parameter learning , 2008 .

[2]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[3]  Gareth W. Peters,et al.  An Overview of Recent Advances in Monte-Carlo Methods for Bayesian Filtering in High-Dimensional Spaces , 2015 .

[4]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[5]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[6]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Yuguo Chen,et al.  Analysis of the formation of the structure of social networks by using latent space models for ranked dynamic networks , 2015, 2005.08269.

[8]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[9]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[10]  Daniele Durante,et al.  Locally Adaptive Dynamic Networks , 2015, 1505.05668.

[11]  J. Míguez,et al.  Nested particle filters for online parameter estimation in discrete-time state-space Markov models , 2013, Bernoulli.

[12]  Gareth W. Peters,et al.  Langevin and Hamiltonian Based Sequential MCMC for Efficient Bayesian Filtering in High-Dimensional Spaces , 2015, IEEE Journal of Selected Topics in Signal Processing.

[13]  Peter D. Hoff,et al.  Fast Inference for the Latent Space Network Model Using a Case-Control Approximate Likelihood , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[14]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[15]  Peter Orbanz,et al.  Random‐walk models of network formation and sequential Monte Carlo methods for graphs , 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[16]  Yuguo Chen,et al.  Latent Space Models for Dynamic Networks , 2015, 2005.08808.

[17]  Hedibert F. Lopes,et al.  Particle filters and Bayesian inference in financial econometrics , 2011 .

[18]  V. Gemmetto,et al.  Mitigation of infectious disease at school: targeted class closure vs school closure , 2014, BMC Infectious Diseases.

[19]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[20]  Yuguo Chen,et al.  Latent space models for dynamic networks with weighted edges , 2020, Soc. Networks.

[21]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[22]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[23]  L. Gerencsér,et al.  Recursive estimation of Hidden Markov Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[24]  Hans R. Künsch,et al.  Approximating and Maximising the Likelihood for a General State-Space Model , 2001, Sequential Monte Carlo Methods in Practice.

[25]  Peter D. Hoff,et al.  Multiplicative coevolution regression models for longitudinal networks and nodal attributes , 2017, Soc. Networks.

[26]  Gareth W. Peters,et al.  Efficient Sequential Monte-Carlo Samplers for Bayesian Inference , 2015, IEEE Transactions on Signal Processing.

[27]  Pavel N Krivitsky,et al.  A separable model for dynamic networks , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[28]  E. Xing,et al.  A state-space mixed membership blockmodel for dynamic network tomography , 2008, 0901.0135.

[29]  D. Dunson,et al.  Nonparametric Bayes dynamic modelling of relational data , 2013, 1311.4669.

[30]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[31]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[32]  P. Leeuwen,et al.  Nonlinear data assimilation in geosciences: an extremely efficient particle filter , 2010 .

[33]  Arnaud Doucet,et al.  Sequentially interacting Markov chain Monte Carlo methods , 2010, 1211.2582.

[34]  M. Pitt,et al.  Particle filters for continuous likelihood evaluation and maximisation , 2011 .

[35]  Thomas Brendan Murphy,et al.  Multiresolution Network Models , 2016, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[36]  Purnamrita Sarkar,et al.  A Latent Space Approach to Dynamic Embedding of Co-occurrence Data , 2007, AISTATS.

[37]  Xiao Zhang,et al.  Random graph models for dynamic networks , 2016, The European Physical Journal B.

[38]  Eric P. Xing,et al.  Discrete Temporal Models of Social Networks , 2006, SNA@ICML.

[39]  Marco Corneli,et al.  Continuous latent position models for instantaneous interactions , 2021, Netw. Sci..

[40]  Melanie Ades,et al.  The equivalent‐weights particle filter in a high‐dimensional system , 2015 .

[41]  T. Bengtsson,et al.  Performance Bounds for Particle Filters Using the Optimal Proposal , 2015 .

[42]  Kevin Lee,et al.  A review of dynamic network models with latent variables. , 2017, Statistics surveys.

[43]  Fredrik Lindsten,et al.  High-Dimensional Filtering Using Nested Sequential Monte Carlo , 2016, IEEE Transactions on Signal Processing.

[44]  Yves F. Atchad'e,et al.  Iterated filtering , 2009, 0902.0347.

[45]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[46]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[47]  Ciro Cattuto,et al.  High-Resolution Measurements of Face-to-Face Contact Patterns in a Primary School , 2011, PloS one.

[48]  P. Bickel,et al.  Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.

[49]  P. Fearnhead,et al.  Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State–Space Models With Linear Computational Cost , 2013, 1306.0735.

[50]  Ömer Deniz Akyildiz,et al.  Nudging the particle filter , 2017, Statistics and Computing.

[51]  Yan Liu,et al.  Variational Inference for Latent Space Models for Dynamic Networks , 2021, 2105.14093.

[52]  Jonathan R. Stroud,et al.  Understanding the Ensemble Kalman Filter , 2016 .

[53]  Sze Kim Pang,et al.  On MCMC-Based particle methods for Bayesian filtering: Application to multitarget tracking , 2009, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[54]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[55]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[56]  Yuguo Chen,et al.  Latent Space Approaches to Community Detection in Dynamic Networks , 2017, 2005.08276.

[57]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[58]  Olivier Capp'e Online EM Algorithm for Hidden Markov Models , 2009, 0908.2359.

[59]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[60]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[61]  Daniele Durante,et al.  Bayesian Learning of Dynamic Multilayer Networks , 2016, J. Mach. Learn. Res..

[62]  Joonha Park,et al.  A guided intermediate resampling particle filter for inference on high dimensional systems , 2017 .

[63]  Nial Friel,et al.  Computationally efficient inference for latent position network models , 2018, 1804.02274.

[64]  Adrian E Raftery,et al.  Interlocking directorates in Irish companies using a latent space model for bipartite networks , 2016, Proceedings of the National Academy of Sciences.

[65]  A. Moore,et al.  Dynamic social network analysis using latent space models , 2005, SKDD.

[66]  A. Beskos,et al.  Error Bounds and Normalising Constants for Sequential Monte Carlo Samplers in High Dimensions , 2014, Advances in Applied Probability.

[67]  Alfred O. Hero,et al.  Dynamic Stochastic Blockmodels for Time-Evolving Social Networks , 2014, IEEE Journal of Selected Topics in Signal Processing.

[68]  Hui Zhang,et al.  Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models , 2012, Comput. Geosci..

[69]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[70]  Fredrik Lindsten,et al.  Improving the particle filter in high dimensions using conjugate artificial process noise , 2018, 1801.07000.

[71]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[72]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[73]  A. Beskos,et al.  On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.

[74]  Yihong Gong,et al.  Detecting communities and their evolutions in dynamic social networks—a Bayesian approach , 2011, Machine Learning.

[75]  Nick Whiteley,et al.  An Introduction to Twisted Particle Filters and Parameter Estimation in Non-Linear State-Space Models , 2015, IEEE Transactions on Signal Processing.

[76]  Joshua Neil,et al.  Anomaly Detection in Large-Scale Networks With Latent Space Models , 2019, Technometrics.

[77]  A. Beskos,et al.  A stable particle filter for a class of high-dimensional state-space models , 2017, Advances in Applied Probability.

[78]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .