Probabilistic Asymptotic Decider for Topological Ambiguity Resolution in Level-Set Extraction for Uncertain 2D Data

We present a framework for the analysis of uncertainty in isocontour extraction. The marching squares (MS) algorithm for isocontour reconstruction generates a linear topology that is consistent with hyperbolic curves of a piecewise bilinear interpolation. The saddle points of the bilinear interpolant cause topological ambiguity in isocontour extraction. The midpoint decider and the asymptotic decider are well-known mathematical techniques for resolving topological ambiguities. The latter technique investigates the data values at the cell saddle points for ambiguity resolution. The uncertainty in data, however, leads to uncertainty in underlying bilinear interpolation functions for the MS algorithm, and hence, their saddle points. In our work, we study the behavior of the asymptotic decider when data at grid vertices is uncertain. First, we derive closed-form distributions characterizing variations in the saddle point values for uncertain bilinear interpolants. The derivation assumes uniform and nonparametric noise models, and it exploits the concept of ratio distribution for analytic formulations. Next, the probabilistic asymptotic decider is devised for ambiguity resolution in uncertain data using distributions of the saddle point values derived in the first step. Finally, the confidence in probabilistic topological decisions is visualized using a colormapping technique. We demonstrate the higher accuracy and stability of the probabilistic asymptotic decider in uncertain data with regard to existing decision frameworks, such as deciders in the mean field and the probabilistic midpoint decider, through the isocontour visualization of synthetic and real datasets.

[1]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[2]  Kristin Potter,et al.  Surface boxplots. , 2014, Stat.

[3]  Valerio Pascucci,et al.  Gaussian mixture model based volume visualization , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[4]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Bernard W. Silverman,et al.  The kernel method for multivariate data , 2018 .

[6]  Hans-Christian Hege,et al.  Positional Uncertainty of Isocontours: Condition Analysis and Probabilistic Measures , 2011, IEEE Transactions on Visualization and Computer Graphics.

[7]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[8]  Hans-Christian Hege,et al.  Uncertain 2D Vector Field Topology , 2010, Comput. Graph. Forum.

[9]  Daniel Weiskopf,et al.  Flow Radar Glyphs—Static Visualization of Unsteady Flow with Uncertainty , 2011, IEEE Transactions on Visualization and Computer Graphics.

[10]  Ken Brodlie,et al.  A Review of Uncertainty in Data Visualization , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[11]  Han-Wei Shen,et al.  Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[12]  Alireza Entezari,et al.  A Statistical Direct Volume Rendering Framework for Visualization of Uncertain Data , 2017, IEEE Transactions on Visualization and Computer Graphics.

[13]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[14]  Hans-Christian Hege,et al.  Probabilistic Marching Cubes , 2011, Comput. Graph. Forum.

[15]  Torre Zuk,et al.  Visualizing uncertainty , 2008 .

[16]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[17]  Song Zhang,et al.  A CONTOUR TREE BASED VISUALIZATION FOR EXPLORING DATA WITH UNCERTAINTY , 2013 .

[18]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[19]  Penny Rheingans,et al.  Probabilistic surfaces: point based primitives to show surface uncertainty , 2002, IEEE Visualization, 2002. VIS 2002..

[20]  Alex T. Pang,et al.  Visualizing scalar volumetric data with uncertainty , 2002, Comput. Graph..

[21]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[22]  Alireza Entezari,et al.  Isosurface Visualization of Data with Nonparametric Models for Uncertainty , 2016, IEEE Transactions on Visualization and Computer Graphics.

[23]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.

[24]  Joseph Salmon,et al.  Mandatory Critical Points of 2D Uncertain Scalar Fields , 2014, Comput. Graph. Forum.

[25]  Alireza Entezari,et al.  Uncertainty Quantification in Linear Interpolation for Isosurface Extraction , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[27]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[28]  Robert S. Laramee,et al.  Uncertainty Visualization Methods in Isosurface Rendering , 2003, Eurographics.

[29]  Dongbin Xiu,et al.  INTERACTIVE VISUALIZATION OF PROBABILITY AND CUMULATIVE DENSITY FUNCTIONS. , 2012, International journal for uncertainty quantification.

[30]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[31]  Ken Brodlie,et al.  Interactive Approaches to Contouring and Isosurfacing for Geovisualization , 2005 .

[32]  H. Griethe Visualizing Uncertainty for Improved Decision Making , 2005 .

[33]  Jennifer L. Dungan,et al.  Visualizing spatially varying distribution data , 2002, Proceedings Sixth International Conference on Information Visualisation.

[34]  Peter A. Irwin Vortices and tall buildings: A recipe for resonance , 2010 .

[35]  T. Palmer,et al.  Development of a European Multi-Model Ensemble System for Seasonal to Inter-Annual Prediction (DEMETER) , 2004 .

[36]  Sayan Mukherjee,et al.  Contour trees of uncertain terrains , 2015, SIGSPATIAL/GIS.

[37]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[38]  Jennifer L. Dungan,et al.  Visualizing Spatial Distribution Data Sets , 2003, VisSym.

[39]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.