Optimization of zero-pole interlacing for indirect discrete approximations of noninteger order operators

To realize the basic units of fractional order controllers, it is necessary to approximate irrational differintegrators. Many methods deal with analog approximation. But not many results exist for discrete approximation. In this case, approximations are most times poor in some frequency range, or the quality of the approximation is good in a narrow frequency interval. This paper proposes an indirect discretization method that takes advantage from the particle swarm optimization (PSO) to approximate fractional order operators. The method employs an heuristic procedure to optimize the interlacing of zero-pole pairs on the real axis. Then, a discretization rule is applied to obtain the discrete approximation. Simulation results show that the frequency response obtained by PSO improves the approximation offered by other efficient and recent indirect discretization techniques.

[1]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[2]  M. Omair Ahmad,et al.  Exact fractional-order differentiators for polynomial signals , 2004, IEEE Signal Processing Letters.

[3]  Guido Maione,et al.  High-Speed Digital Realizations of Fractional Operators in the Delta Domain , 2011, IEEE Transactions on Automatic Control.

[4]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[5]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[6]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[8]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[9]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[10]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[11]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[12]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[13]  Alessandro Pisano,et al.  Nonlinear fractional PI control of a class of fractional-order systems , 2012 .

[14]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[15]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[16]  Guido Maione,et al.  Thiele’s continued fractions in digital implementation of noninteger differintegrators , 2012, Signal Image Video Process..

[17]  Hironori A. Fujii,et al.  H(infinity) optimized wave-absorbing control - Analytical and experimental results , 1993 .

[18]  Chien-Cheng Tseng,et al.  Design of fractional order digital FIR differentiators , 2001, IEEE Signal Processing Letters.

[19]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[20]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[21]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[22]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[23]  Guido Maione,et al.  Conditions for a Class of Rational Approximants of Fractional Differentiators/Integrators to Enjoy the Interlacing Property , 2011 .

[24]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[25]  Igor Podlubny,et al.  On Fractional Derivatives, Fractional-Orlder Dynamic Systems and PIXD~-controllei~s , 1997 .

[26]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[27]  Guido Maione,et al.  Loop‐Shaping and Easy Tuning of Fractional‐Order Proportional Integral Controllers for Position Servo Systems , 2013 .

[28]  YangQuan Chen,et al.  UBIQUITOUS FRACTIONAL ORDER CONTROLS , 2006 .

[29]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .