SPH modeling of fluid-structure interaction

This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.

[1]  Rade Vignjevic,et al.  SPH in a Total Lagrangian Formalism , 2006 .

[2]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[3]  Javier Bonet,et al.  A simplified approach to enhance the performance of smooth particle hydrodynamics methods , 2002, Appl. Math. Comput..

[4]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[5]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[6]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[7]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[8]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction , 2006 .

[9]  Yannis Kallinderis,et al.  Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes , 2006, J. Comput. Phys..

[10]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[11]  Jean-François Sigrist,et al.  Fluid-Structure Interaction: An Introduction to Finite Element Coupling , 2015 .

[12]  Nikolaus A. Adams,et al.  A generalized transport-velocity formulation for smoothed particle hydrodynamics , 2017, J. Comput. Phys..

[13]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[14]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[15]  Hans-Joachim Bungartz,et al.  Fluid-structure interaction : modelling, simulation, optimisation , 2006 .

[16]  R. Mittal,et al.  Benchmarking a Coupled Immersed-Boundary-Finite-Element Solver for Large-Scale Flow-Induced Deformation , 2012 .

[17]  Luca Heltai,et al.  Benchmarking the immersed finite element method for fluid-structure interaction problems , 2013, Comput. Math. Appl..

[18]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[19]  Hu Dai,et al.  Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems , 2014, J. Comput. Phys..

[20]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[21]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[22]  M. Gaster Vortex shedding from circular cylinders at low Reynolds numbers , 1971, Journal of Fluid Mechanics.

[23]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[24]  J. Monaghan SPH without a Tensile Instability , 2000 .

[25]  Nicolas G. Wright,et al.  A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure , 2016 .

[26]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[27]  D. R. J. Owen,et al.  Numerical Simulations of Irregular Particle Transport in Turbulent Flows Using Coupled LBM-DEM , 2007 .

[28]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .