Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration, with Applications to Manifold Learning

One of the common tasks in unsupervised learning is dimensionality reduction, where the goal is to find meaningful low-dimensional structures hidden in high-dimensional data. Sometimes referred to as manifold learning, this problem is closely related to the problem of localization, which aims at embedding a weighted graph into a low-dimensional Euclidean space. Several methods have been proposed for localization, and also manifold learning. Nonetheless, the robustness property of most of them is little understood. In this paper, we obtain perturbation bounds for classical scaling and trilateration, which are then applied to derive performance bounds for Isomap, Landmark Isomap, and Maximum Variance Unfolding. A new perturbation bound for procrustes analysis plays a key role.

[1]  Ying Zhang,et al.  Localization from mere connectivity , 2003, MobiHoc '03.

[2]  Adel Javanmard,et al.  Localization from Incomplete Noisy Distance Measurements , 2011, Foundations of Computational Mathematics.

[3]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[4]  I. Hassan Embedded , 2005, The Cyber Security Handbook.

[5]  Alexander Paprotny,et al.  On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap , 2012, AISTATS.

[6]  Ery Arias-Castro,et al.  On the convergence of maximum variance unfolding , 2012, J. Mach. Learn. Res..

[7]  B. R. Badrinath,et al.  DV Based Positioning in Ad Hoc Networks , 2003, Telecommun. Syst..

[8]  R. Sibson Studies in the Robustness of Multidimensional Scaling: Perturbational Analysis of Classical Scaling , 1979 .

[9]  Qiang Ye,et al.  Discrete Hessian Eigenmaps method for dimensionality reduction , 2015, J. Comput. Appl. Math..

[10]  G. Seber Multivariate observations / G.A.F. Seber , 1983 .

[11]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[12]  Kilian Q. Weinberger,et al.  An Introduction to Nonlinear Dimensionality Reduction by Maximum Variance Unfolding , 2006, AAAI.

[13]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[14]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[16]  V. Koltchinskii,et al.  Empirical graph Laplacian approximation of Laplace–Beltrami operators: Large sample results , 2006, math/0612777.

[17]  Larry A. Wasserman,et al.  Manifold Estimation and Singular Deconvolution Under Hausdorff Loss , 2011, ArXiv.

[18]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[19]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[20]  Joshua B. Tenenbaum,et al.  Sparse multidimensional scaling using land-mark points , 2004 .

[21]  Ilse C. F. Ipsen,et al.  Randomized Approximation of the Gram Matrix: Exact Computation and Probabilistic Bounds , 2015, SIAM J. Matrix Anal. Appl..

[22]  B. Schölkopf,et al.  Graph Laplacian Regularization for Large-Scale Semidefinite Programming , 2007 .

[23]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[24]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[25]  Ilse C. F. Ipsen,et al.  The Effect of Coherence on Sampling from Matrices with Orthonormal Columns, and Preconditioned Least Squares Problems , 2014, SIAM J. Matrix Anal. Appl..

[26]  G. Alistair Watson,et al.  The solution of orthogonal Procrustes problems for a family of orthogonally invariant norms , 1994, Adv. Comput. Math..

[27]  Hongyuan Zha,et al.  Convergence and Rate of Convergence of a Manifold-Based Dimension Reduction Algorithm , 2008, NIPS.

[28]  Hongyuan Zha,et al.  Continuum Isomap for manifold learnings , 2007, Comput. Stat. Data Anal..

[29]  Forrest W. Young Multidimensional Scaling: History, Theory, and Applications , 1987 .

[30]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[31]  Ery Arias-Castro,et al.  Unconstrained and Curvature-Constrained Shortest-Path Distances and Their Approximation , 2017, Discrete & Computational Geometry.

[32]  Inge Söderkvist,et al.  Perturbation analysis of the orthogonal procrustes problem , 1993 .

[33]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[34]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[35]  Arlene K. H. Kim,et al.  Tight minimax rates for manifold estimation under Hausdorff loss , 2015 .

[36]  Kim-Chuan Toh,et al.  Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.

[37]  Hongyuan Zha,et al.  Spectral Properties of the Alignment Matrices in Manifold Learning , 2009, SIAM Rev..

[38]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[39]  Kaizhong Zhang,et al.  Evaluating a class of distance-mapping algorithms for data mining and clustering , 1999, KDD '99.

[40]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[41]  Alon Zakai,et al.  Manifold Learning: The Price of Normalization , 2008, J. Mach. Learn. Res..

[42]  John Platt,et al.  FastMap, MetricMap, and Landmark MDS are all Nystrom Algorithms , 2005, AISTATS.

[43]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[44]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.