Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium‐Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

The search for earth‐abundant and high‐performance electrode materials for sodium‐ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain‐like MoS3—can be a better choice as the anode material of sodium‐ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g−1), rate capability (235 mA h g−1 at 20 A g−1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm−3 and an areal capacity of >6.0 mA h cm−2 at very high areal loadings of active materials (up to 12 mg cm−2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.

[1]  Xiao Zhang,et al.  Solution‐Processed Two‐Dimensional Metal Dichalcogenide‐Based Nanomaterials for Energy Storage and Conversion , 2016, Advanced materials.

[2]  Yanguang Li,et al.  Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes. , 2016, ACS nano.

[3]  Chun‐Sing Lee,et al.  Hierarchical nanotubes assembled from MoS2-carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries , 2016 .

[4]  Thomas M. Higgins,et al.  A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. , 2016, ACS nano.

[5]  Y. Gogotsi,et al.  MoS2 Nanosheets Vertically Aligned on Carbon Paper: A Freestanding Electrode for Highly Reversible Sodium‐Ion Batteries , 2016 .

[6]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[7]  Yeyun Wang,et al.  Iron-based sodium-ion full batteries , 2016 .

[8]  Kevin G. Gallagher,et al.  Optimizing areal capacities through understanding the limitations of lithium-ion electrodes , 2016 .

[9]  Yousung Jung,et al.  Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes , 2015 .

[10]  Yanguang Li,et al.  Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries , 2015 .

[11]  Dingchang Lin,et al.  A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries , 2015 .

[12]  A. Hayashi,et al.  Electrochemical properties of all-solid-state lithium batteries with amorphous MoS3 electrodes prepared by mechanical milling , 2015 .

[13]  Bin Liu,et al.  Ni3+‐Induced Formation of Active NiOOH on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction , 2015 .

[14]  Yan Yao,et al.  Nanoflake‐Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism , 2015 .

[15]  Hee‐Tae Jung,et al.  High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries , 2015 .

[16]  Wei Zhang,et al.  Water-soluble MoS3 nanoparticles for photocatalytic H2 evolution. , 2015, ChemSusChem.

[17]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[18]  Guoxiu Wang,et al.  Ultrathin MoS2 Nanosheets as Anode Materials for Sodium‐Ion Batteries with Superior Performance , 2015 .

[19]  Claus Daniel,et al.  Prospects for reducing the processing cost of lithium ion batteries , 2015 .

[20]  W. Goddard,et al.  Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-Performance Electrocatalytic Hydrogen Evolution , 2015 .

[21]  S. Gul,et al.  Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide Electrocatalyst , 2014, Journal of the American Chemical Society.

[22]  Horst Hahn,et al.  Thick Electrodes for High Energy Lithium Ion Batteries , 2015 .

[23]  Chunsheng Wang,et al.  An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. , 2015, Small.

[24]  Nikhil V. Medhekar,et al.  Ab initio characterization of layered MoS2 as anode for sodium-ion batteries , 2014 .

[25]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[26]  Sen Xin,et al.  Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. , 2014, Angewandte Chemie.

[27]  D. Wexler,et al.  Reversible sodium storage via conversion reaction of a MoS₂-C composite. , 2014, Chemical communications.

[28]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[29]  Jiangfeng Qian,et al.  Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries. , 2014, Nano letters.

[30]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[31]  Kepeng Song,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[32]  Xinping Ai,et al.  Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. , 2014, Nano letters.

[33]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[34]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[35]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[36]  Xuanxiong Zhang,et al.  Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3 , 2013 .

[37]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[38]  H. Vrubel,et al.  Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving Catalyst , 2013 .

[39]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[40]  Lain‐Jong Li,et al.  Self-assembly of hierarchical MoS x /CNT nanocomposites (2 , x , 3): towards high performance anode materials for lithium ion batteries , 2022 .

[41]  Y. Gogotsi,et al.  Capacitive energy storage in nanostructured carbon-electrolyte systems. , 2013, Accounts of chemical research.

[42]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[43]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[44]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[45]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[46]  H. Vrubel,et al.  Hydrogen evolution catalyzed by MoS3 and MoS2 particles , 2012 .

[47]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[48]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[49]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[50]  C. Lamberti,et al.  Model oxide supported MoS2 HDS catalysts: structure and surface properties , 2011 .

[51]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[52]  S. Hibble,et al.  Modeling the structure of amorphous MoS3: a neutron diffraction and reverse Monte Carlo study. , 2004, Journal of the American Chemical Society.

[53]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[54]  T. Ressler WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.

[55]  D. Schleich,et al.  Comparative IR and Raman studies of various amorphous MoS3 and LixMoS3 phases , 1989 .

[56]  J. J. Auborn,et al.  Amorphous Molybdenum Sulfide Electrodes for Nonaqueous Electrochemical Cells , 1987 .

[57]  T. Jacobsen,et al.  A rechargeable all-solid-state sodium cell with polymer electrolyte , 1985 .

[58]  Yeyun Wang,et al.  Contents of Previous Volumes , 1985, Spenser Studies.

[59]  M. Whittingham,et al.  Amorphous molybdenum trisulfide: A new lithium battery cathode , 1979 .

[60]  A. Müller,et al.  Thermal decomposition of (NH4)2MoO2S2, (NH4)2MoS4, (NH4)2WO2S2 and (NH4)2WS4 , 1973 .