microPrimer: the biogenesis and function of microRNA

Discovered in nematodes in 1993, microRNAs (miRNAs) are non-coding RNAs that are related to small interfering RNAs (siRNAs), the small RNAs that guide RNA interference (RNAi). miRNAs sculpt gene expression profiles during plant and animal development. In fact, miRNAs may regulate as many as one-third of human genes. miRNAs are found only in plants and animals, and in the viruses that infect them. miRNAs function very much like siRNAs, but these two types of small RNAs can be distinguished by their distinct pathways for maturation and by the logic by which they regulate gene expression.

[1]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[2]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[3]  Gang Wu,et al.  SGS 3 and SGS 2 / SDE 1 / RDR 6 are required for juvenile development and the production of transacting siRNAs in Arabidopsis , 2004 .

[4]  Robert B. Russell,et al.  Principles of MicroRNATarget Recognition , 2005 .

[5]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[6]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[8]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[9]  James M. Pipas,et al.  SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells , 2005, Nature.

[10]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[11]  Michael Sattler,et al.  Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain , 2004, Nature Structural &Molecular Biology.

[12]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[13]  Edwin Cuppen,et al.  The microRNA-producing enzyme Dicer1 is essential for zebrafish development , 2003, Nature Genetics.

[14]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[15]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[16]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[17]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[18]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[19]  Franck Vazquez,et al.  Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. , 2004, Molecular cell.

[20]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[21]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[22]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[23]  D. Baulcombe,et al.  Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[25]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[26]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[27]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[28]  Eric J Wagner,et al.  Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. , 2002, Molecular cell.

[29]  Thomas Tuschl,et al.  Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. , 2004, RNA.

[30]  Florian Caiment,et al.  RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus , 2005, Current Biology.

[31]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[32]  Wei Yang,et al.  Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis , 2005, Cell.

[33]  B. Cullen,et al.  Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. , 2004, Nucleic acids research.

[34]  Nick V Grishin,et al.  Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Michael Zuker,et al.  MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression , 2004, Nature Genetics.

[36]  Marjori Matzke,et al.  Evidence for Nuclear Processing of Plant Micro RNA and Short Interfering RNA Precursors1[w] , 2003, Plant Physiology.

[37]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[38]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[39]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[40]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[41]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[42]  Adam M. Gustafson,et al.  Genetic and Functional Diversification of Small RNA Pathways in Plants , 2004, PLoS biology.

[43]  O. Voinnet,et al.  In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. , 2004, Genes & development.

[44]  H. Lipkin Where is the ?c? , 1978 .

[45]  A. Mccarthy Development , 1996, Current Opinion in Neurobiology.

[46]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[47]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[48]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[49]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[50]  M. Siomi,et al.  A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. , 2002, Genes & development.

[51]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[52]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[53]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[54]  H. Vaucheret,et al.  Arabidopsis HEN1 A Genetic Link between Endogenous miRNA Controlling Development and siRNA Controlling Transgene Silencing and Virus Resistance , 2003, Current Biology.

[55]  G. Ruvkun,et al.  A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. , 1996, Genes & development.

[56]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[57]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[58]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[59]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[60]  R. R. Samaha,et al.  Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. , 2000, Science.

[61]  H. Vaucheret,et al.  The Nuclear dsRNA Binding Protein HYL1 Is Required for MicroRNA Accumulation and Plant Development, but Not Posttranscriptional Transgene Silencing , 2004, Current Biology.

[62]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[63]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[64]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[65]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[66]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[67]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[68]  Chiara Gamberi,et al.  The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. , 2003, Developmental cell.

[69]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[70]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[71]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[72]  Yijun Qi,et al.  Biochemical specialization within Arabidopsis RNA silencing pathways. , 2005, Molecular cell.

[73]  C. Kidner,et al.  The developmental role of microRNA in plants. , 2005, Current opinion in plant biology.

[74]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[75]  H. Ruohola-Baker,et al.  Stem cell division is regulated by the microRNA pathway , 2005, Nature.

[76]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[77]  B. Cullen Transcription and processing of human microRNA precursors. , 2004, Molecular cell.

[78]  G. Jürgens,et al.  Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis , 1998, The EMBO journal.

[79]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[80]  A. Rougvie,et al.  Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues , 2005, Development.

[81]  A. Caudy,et al.  Fragile X-related protein and VIG associate with the RNA interference machinery. , 2002, Genes & development.

[82]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[83]  Phillip D Zamore,et al.  Sequence-Specific Inhibition of Small RNA Function , 2004, PLoS biology.

[84]  Phillip D Zamore,et al.  Perspective: machines for RNAi. , 2005, Genes & development.

[85]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[86]  B. Cullen,et al.  Efficient Processing of Primary microRNA Hairpins by Drosha Requires Flanking Nonstructured RNA Sequences* , 2005, Journal of Biological Chemistry.

[87]  B. Cullen,et al.  Sequence requirements for micro RNA processing and function in human cells. , 2003, RNA.

[88]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[89]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[90]  Qinghua Liu,et al.  Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. , 2005, Genes & development.

[91]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[92]  Adam M. Gustafson,et al.  microRNA-Directed Phasing during Trans-Acting siRNA Biogenesis in Plants , 2005, Cell.

[93]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[94]  B. Bass,et al.  A Role for the RNase III Enzyme DCR-1 in RNA Interference and Germ Line Development in Caenorhabditis elegans , 2001, Science.

[95]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[96]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[97]  C Burks,et al.  The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. , 1998, Development.

[98]  D. Bouchez,et al.  AGO1 defines a novel locus of Arabidopsis controlling leaf development , 1998, The EMBO journal.

[99]  Haifan Lin,et al.  A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. , 1998, Genes & development.

[100]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets , 2004, Genome Biology.

[101]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[102]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[103]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[104]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[105]  Debora S. Marks,et al.  Antisense-Mediated Depletion Reveals Essential and Specific Functions of MicroRNAs in Drosophila Development , 2005, Cell.

[106]  J. Messing,et al.  CARPEL FACTORY, a Dicer Homolog, and HEN1, a Novel Protein, Act in microRNA Metabolism in Arabidopsis thaliana , 2002, Current Biology.

[107]  Blossom Damania,et al.  Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Kwang-Soo Kim,et al.  Depletion of Human Micro-RNA miR-125b Reveals That It Is Critical for the Proliferation of Differentiated Cells but Not for the Down-regulation of Putative Targets during Differentiation* , 2005, Journal of Biological Chemistry.

[109]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[110]  Z. Xie,et al.  Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation , 2003, Current Biology.

[111]  E. Lai,et al.  The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. , 1997, Development.

[112]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[113]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[114]  A. Caudy,et al.  Role for a bidentate ribonuclease in the initiation step of RNA interference , 2001 .

[115]  Gang Wu,et al.  SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. , 2004, Genes & development.

[116]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[117]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[118]  B. Cullen,et al.  Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha , 2005, The EMBO journal.

[119]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[120]  Chris Sander,et al.  The developmental miRNA profiles of zebrafish as determined by small RNA cloning. , 2005, Genes & development.

[121]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[122]  A. Caudy,et al.  A micrococcal nuclease homologue in RNAi effector complexes , 2003, Nature.

[123]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[124]  Gang Wu,et al.  Nuclear processing and export of microRNAs in Arabidopsis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[125]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[126]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[127]  S. Elledge,et al.  Dicer is essential for mouse development , 2003, Nature Genetics.

[128]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[129]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[130]  Franck Vazquez,et al.  The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. , 2004, Genes & development.

[131]  A. Saïb,et al.  A Cellular MicroRNA Mediates Antiviral Defense in Human Cells , 2005, Science.

[132]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[133]  B. Reinhart,et al.  MicroRNAs in plants. , 2002, Genes & development.

[134]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[135]  E. Lai Predicting and validating microRNA targets , 2004, Genome Biology.

[136]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[137]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[138]  A. Caudy,et al.  Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi , 2001, Science.

[139]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[140]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[141]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[142]  D. Barford,et al.  Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity , 2004, The EMBO journal.

[143]  Min Han,et al.  The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. , 2005, Molecular cell.

[144]  Wayne Tam,et al.  Accumulation of miR-155 and BIC RNA in human B cell lymphomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.