Blue-Phase Liquid Crystal Displays With Vertical Field Switching

A low-voltage, high-transmittance, hysteresis-free, and submillisecond-response polymer-stabilized blue-phase liquid crystal (BPLC) display with vertical field switching (VFS) and oblique incident light is demonstrated. In the VFS mode, the electric field is in longitudinal direction and is uniform. By using a thin cell gap and a large oblique incident angle, the operation voltage is significantly reduced which plays a key role to eliminate hysteresis and residual birefringence. The VFS mode is a strong contender for the emerging BPLC display and photonic devices.

[1]  Shin-Tson Wu,et al.  A large Kerr constant polymer-stabilized blue phase liquid crystal , 2011 .

[2]  Shin‐Tson Wu,et al.  Dispersion relation on the Kerr constant of a polymer-stabilized optically isotropic liquid crystal. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Shin-Tson Wu,et al.  Modeling of Blue Phase Liquid Crystal Displays , 2009, Journal of Display Technology.

[4]  Yan Li,et al.  Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes , 2010 .

[5]  Shin-Tson Wu,et al.  Low Voltage Blue-Phase LCDs With Double-Penetrating Fringe Fields , 2010, Journal of Display Technology.

[6]  고이찌 마스야마,et al.  Plane light source unit , 2006 .

[7]  Toshihiko Nagamura,et al.  Large Electro‐optic Kerr Effect in Nanostructured Chiral Liquid‐Crystal Composites over a Wide Temperature Range , 2005 .

[8]  Shin‐Tson Wu,et al.  Viewing angle controllable displays with a blue-phase liquid crystal cell. , 2010, Optics express.

[9]  Shin-Tson Wu,et al.  Submillisecond Gray-Level Response Time of a Polymer-Stabilized Blue-Phase Liquid Crystal , 2010, Journal of Display Technology.

[10]  Do Hyuk Park,et al.  23.3: A Vertical-Field-Driven Polymer-Stabilized Blue Phase Liquid Crystal Displays , 2011 .

[11]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[12]  Takahiro Ishinabe,et al.  Vertical field switching for blue-phase liquid crystal devices , 2011 .

[13]  K. Kalantar,et al.  A Monolithic Segmented Functional Light Guide For 2-D Dimming LCD Backlight , 2010 .

[14]  Shin-Tson Wu,et al.  Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays , 2009 .

[15]  Shin-Tson Wu,et al.  Hysteresis Effects in Blue-Phase Liquid Crystals , 2010, Journal of Display Technology.

[16]  Shin-Tson Wu,et al.  Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications , 2011 .

[17]  Shin‐Tson Wu,et al.  Electro-optics of polymer-stabilized blue phase liquid crystal displays , 2009 .

[18]  Shin-Tson Wu,et al.  Low voltage blue-phase liquid crystal displays , 2009 .

[19]  Jae-Hong Park,et al.  11.1: Invited Paper: The World's First Blue Phase Liquid Crystal Display , 2011 .

[20]  M. Sato,et al.  Electro‐Optical Switching in a Blue Phase III Exhibited by a Chiral Liquid Crystal Oligomer , 2007 .

[21]  Hui-Chuan Cheng,et al.  7.4: Extended Kerr Effect in a Polymer‐Stabilized Blue‐Phase Liquid Crystal Composite , 2010 .

[22]  Shin-Tson Wu,et al.  13.3: Submillisecond GraytoGray Response Time of PolymerStabilized Blue Phase Liquid Crystals , 2010 .

[23]  Shin-Tson Wu,et al.  Corrections to “Analytical Solutions for Uniaxial-Film-Compensated Wide-View Liquid Crystal Displays” , 2006 .