Automata theory based on complete residuated lattice-valued logic: Turing machines

Automata theory based on complete residuated lattice-valued logic, called L-valued finite automata (L-VFAs), has been established by the second author in 2001. In view of the importance of Turing machines, in this paper, we establish a theory of Turing machines based on complete residuated lattice-valued logic, which is a continuation of L-VFAs. First, we give the definition of L-valued nondeterministic Turing machines (L-NTMs), and observe that the multitape L-NTMs have the same language-recognizing power as the single-tape L-NTMs. We give some related properties of L-valued Turing machines, and discuss computing with fuzzy letters via L-valued Turing machines. Second, we introduce the concepts of L-valued recursively enumerable languages and L-valued recursive languages, and obtain some equivalent relations. Some results concerning the characterization of n-recursively enumerable sets are given, and the super-computing power of L-valued Turing machines is investigated. We also prove that L-valued deterministic Turing machines and L-NTMs are not equivalent in the sense of recognizing or deciding languages. Finally, we show that there is no universal L-valued Turing machine. However, a universal L-valued Turing machine exists if the membership degrees of L-valued sets are restricted to a finite complete residuated lattice with universal bounds 0 and 1.

[1]  Jirí Wiedermann,et al.  Fuzzy Turing Machines Revised , 2002, Comput. Artif. Intell..

[2]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[3]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[4]  Atwell R. Turquette,et al.  On the Many-Valued Logics , 1941 .

[5]  Daowen Qiu,et al.  Automata theory based on quantum logic: some characterizations , 2004, Inf. Comput..

[6]  Giangiacomo Gerla Effectiveness and multivalued logics , 2006, J. Symb. Log..

[7]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[8]  Daowen Qiu,et al.  Pumping lemma in automata theory based on complete residuated lattice-valued logic: A note , 2006, Fuzzy Sets Syst..

[9]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[10]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[12]  Miguel Delgado,et al.  Introduction to the concept of recursiveness of fuzzy functions , 1987 .

[13]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[14]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[15]  Jirí Wiedermann,et al.  Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machines , 2004, Theor. Comput. Sci..

[16]  Lotfi A. Zadeh,et al.  Fuzzy Algorithms , 1968, Inf. Control..

[17]  Huaiqing Wang,et al.  A probabilistic model of computing with words , 2005, J. Comput. Syst. Sci..

[18]  J. Mordeson,et al.  Fuzzy Discrete Structures , 2000 .

[19]  Giangiacomo Gerla,et al.  Fuzzy subsets: a constructive approach , 1992 .

[20]  Claudio Moraga Towards a fuzzy computability , 1999 .

[21]  Daowen Qiu,et al.  A note on Trillas' CHC models , 2007, Artif. Intell..

[22]  Mingsheng Ying,et al.  A formal model of computing with words , 2002, IEEE Trans. Fuzzy Syst..

[23]  Yongming Li,et al.  Fuzzy Turing Machines: Variants and Universality , 2008, IEEE Transactions on Fuzzy Systems.

[24]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[25]  R. Soare Recursively enumerable sets and degrees , 1987 .

[26]  Daowen Qiu,et al.  Automata theory based on quantum logic: Reversibilities and pushdown automata , 2007, Theor. Comput. Sci..

[27]  Yongming Li,et al.  Approximation and universality of fuzzy Turing machines , 2008, Science in China Series F: Information Sciences.

[28]  Leon Harkleroad Fuzzy Recursion, RET's, and Isols , 1984, Math. Log. Q..

[29]  Giangiacomo Gerla,et al.  Fuzzy logic, continuity and effectiveness , 2002, Arch. Math. Log..

[30]  Eugene S. Santos Fuzzy and probabilistic programs , 1976 .

[31]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[32]  Ricardo Conejo,et al.  On a class of fuzzy computable functions , 2001, Fuzzy Sets Syst..

[33]  Yongming Li,et al.  Lattice-valued fuzzy Turing machines: Computing power, universality and efficiency , 2009, Fuzzy Sets Syst..

[34]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[35]  Daowen Qiu,et al.  Characterizations of fuzzy finite automata , 2004, Fuzzy Sets Syst..

[36]  Benjamín R. C. Bedregal,et al.  On the computing power of fuzzy Turing machines , 2008, Fuzzy Sets Syst..

[37]  Lotfi A. Zadeh,et al.  Note on fuzzy languages , 1969, Inf. Sci..

[38]  Huaiqing Wang,et al.  Computing with words via Turing machines: a formal approach , 2003, IEEE Trans. Fuzzy Syst..

[39]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[40]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[41]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[42]  N. Rescher Many Valued Logic , 1969 .

[43]  Giangiacomo Gerla,et al.  Multi-valued Logics, Effectiveness and Domains , 2007, CiE.

[44]  J. Mordeson,et al.  Fuzzy Automata and Languages: Theory and Applications , 2002 .

[45]  R. P. Dilworth Abstract Residuation over Lattices , 1938 .

[46]  Graçaliz Pereira Dimuro,et al.  Interactive Computation: Stepping Stone in the Pathway From Classical to Developmental Computation , 2005, FInCo@ETAPS.

[47]  Scott A. Smolka,et al.  Turing machines, transition systems, and interaction , 2004, Inf. Comput..

[48]  Mingsheng Ying,et al.  Fuzzifying topology based on complete residuated lattice-valued logic (I) , 1993 .

[49]  Daowen Qiu,et al.  Supervisory control of fuzzy discrete event systems: a formal approach , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[50]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..