Holiest minimum-cost paths and flows in surface graphs

Let G be an edge-weighted directed graph with n vertices embedded on an orientable surface of genus g. We describe a simple deterministic lexicographic perturbation scheme that guarantees uniqueness of minimum-cost flows and shortest paths in G. The perturbations take O(gn) time to compute. We use our perturbation scheme in a black box manner to derive a deterministic O(n loglogn) time algorithm for minimum cut in directed edge-weighted planar graphs and a deterministic O(g2 n logn) time proprocessing scheme for the multiple-source shortest paths problem of computing a shortest path oracle for all vertices lying on a common face of a surface embedded graph. The latter result yields faster deterministic near-linear time algorithms for a variety of problems in constant genus surface embedded graphs. Finally, we open the black box in order to generalize a recent linear-time algorithm for multiple-source shortest paths in unweighted undirected planar graphs to work in arbitrary orientable surfaces. Our algorithm runs in O(g2 n logg) time in this setting, and it can be used to give improved linear time algorithms for several problems in unweighted undirected surface embedded graphs of constant genus including the computation of minimum cuts, shortest topologically non-trivial cycles, and minimum homology bases.

[1]  K. B. Haley,et al.  Programming, Games and Transportation Networks , 1966 .

[2]  Karsten Weihe,et al.  The vertex-disjoint menger problem in planar graphs , 1997, SODA '93.

[3]  Christian Wulff-Nilsen,et al.  Shortest Paths in Planar Graphs with Real Lengths in O(nlog2n/loglogn) Time , 2009, ESA.

[4]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[5]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[6]  David Eppstein,et al.  All-Pairs Minimum Cuts in Near-Linear Time for Surface-Embedded Graphs , 2016, Symposium on Computational Geometry.

[7]  Kyle Fox,et al.  Global Minimum Cuts in Surface-Embedded Graphs , 2012, Encyclopedia of Algorithms.

[8]  Cynthia A. Phillips,et al.  Finding minimum-quotient cuts in planar graphs , 1993, STOC.

[9]  Hsueh-I Lu,et al.  Computing the Girth of a Planar Graph in Linear Time , 2011, COCOON.

[10]  Refael Hassin,et al.  Maximum Flow in (s, t) Planar Networks , 1981, Inf. Process. Lett..

[11]  G. Dantzig,et al.  Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .

[12]  Kyle Fox Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs , 2013, SODA.

[13]  Erin W. Chambers,et al.  Minimum cuts and shortest homologous cycles , 2009, SCG '09.

[14]  Erin W. Chambers,et al.  Counting and Sampling Minimum Cuts in Genus $$g$$g Graphs , 2014, Discret. Comput. Geom..

[15]  Viresh Patel Determining Edge Expansion and Other Connectivity Measures of Graphs of Bounded Genus , 2013, SIAM J. Comput..

[16]  Chao Chen,et al.  Annotating Simplices with a Homology Basis and Its Applications , 2011, SWAT.

[17]  Glencora Borradaile,et al.  Min st-cut Oracle for Planar Graphs with Near-Linear Preprocessing Time , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[18]  Shankar M. Venkatesan,et al.  Partition of planar flow networks , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[19]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[20]  Jannik Matuschke,et al.  Lattices and Maximum Flow Algorithms in Planar Graphs , 2010, WG.

[21]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[22]  Glencora Borradaile,et al.  Minimum cycle and homology bases of surface embedded graphs , 2016, Symposium on Computational Geometry.

[23]  Alon Itai,et al.  Maximum Flow in Planar Networks , 1979, SIAM J. Comput..

[24]  Stefan Waldmann Topology: An Introduction , 2014 .

[25]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[26]  lexander,et al.  THE GENERALIZED SIMPLEX METHOD FOR MINIMIZING A LINEAR FORM UNDER LINEAR INEQUALITY RESTRAINTS , 2012 .

[27]  Philip N. Klein,et al.  Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time algorithm , 2010, TALG.

[28]  R. Ho Algebraic Topology , 2022 .

[29]  Karsten Weihe Maximum (s,t)-flows in planar networks in O(|V|log|V|) time , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[30]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[31]  Piotr Sankowski,et al.  Min-Cuts and Shortest Cycles in Planar Graphs in O(n loglogn) Time , 2011, ESA.

[32]  Samir Khuller,et al.  The Lattice Structure of Flow in Planar Graphs , 1993, SIAM J. Discret. Math..

[33]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[34]  Christian Wulff-Nilsen,et al.  Minimum Cycle Basis and All-Pairs Min Cut of a Planar Graph in Subquadratic Time , 2009, ArXiv.

[35]  Raghav Kulkarni,et al.  Space complexity of perfect matching in bounded genus bipartite graphs , 2012, J. Comput. Syst. Sci..

[36]  Yahav Nussbaum,et al.  Minimum Cut of Directed Planar Graphs in O(n log log n) Time , 2015, SODA.

[37]  David Eisenstat,et al.  Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs , 2013, STOC '13.

[38]  Raghunath Tewari,et al.  Green's theorem and isolation in planar graphs , 2012, Inf. Comput..

[39]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[40]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[41]  Donald B. Johnson,et al.  Partition of Planar Flow Networks (Preliminary Version) , 1983, FOCS 1983.

[42]  Erin W. Chambers,et al.  Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..

[43]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[44]  David Hartvigsen,et al.  The All-Pairs Min Cut Problem and the Minimum Cycle Basis Problem on Planar Graphs , 1994, SIAM J. Discret. Math..

[45]  Raghunath Tewari,et al.  Directed Planar Reachability is in Unambiguous Log-Space , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[46]  Robert E. Tarjan,et al.  Self-adjusting top trees , 2005, SODA '05.

[47]  Piotr Sankowski,et al.  Single Source -- All Sinks Max Flows in Planar Digraphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[48]  R HenzingerMonika,et al.  Randomized fully dynamic graph algorithms with polylogarithmic time per operation , 1999 .

[49]  Jeff Erickson Shortest non-trivial cycles in directed surface graphs , 2011, SoCG '11.

[50]  Jeff Erickson,et al.  Maximum flows and parametric shortest paths in planar graphs , 2010, SODA '10.

[51]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[52]  Amir Nayyeri,et al.  Minimum cuts and shortest non-separating cycles via homology covers , 2011, SODA '11.

[53]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[54]  K. Weihe Maximum (s,t)-Flows in Planar Networks in O( , 1997 .

[55]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[56]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[57]  Karsten Weihe,et al.  Edge-Disjoint (s, t)-Paths on Undirected Planar Graphs in Linear Time , 1994, ESA.

[58]  Robert E. Tarjan,et al.  Dynamic trees as search trees via euler tours, applied to the network simplex algorithm , 1997, Math. Program..

[59]  Jeff Erickson,et al.  Computing the Shortest Essential Cycle , 2010, Discret. Comput. Geom..

[60]  Richard M. Karp,et al.  Parametric shortest path algorithms with an application to cyclic staffing , 1981, Discret. Appl. Math..

[61]  Edwin Roberts,et al.  Transportation networks , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[62]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[63]  Ulrik Brandes,et al.  A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs , 2000, Algorithmica.

[64]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[66]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[67]  Philip N. Klein,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, FOCS.

[68]  William H. Cunningham,et al.  A network simplex method , 1976, Math. Program..

[69]  Martin Kutz,et al.  Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time , 2005, SCG '06.

[70]  Shankar M. Venkatesan Algorithms for network flows , 1983 .

[71]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[72]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[73]  Erin W. Chambers,et al.  Counting and sampling minimum cuts in genus g graphs , 2013, SoCG '13.

[74]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[75]  Erin W. Chambers,et al.  Splitting (complicated) surfaces is hard , 2008, Comput. Geom..