Scaling-law-based metamodels for the sizing of mechatronic systems

Abstract This paper presents a new metamodel form and associated construction procedure adapted to the sizing tasks of mechatronics systems. This method of meta-modeling uses scaling laws to extract compact forms of design models from local numerical simulations (FEM). Compared to traditional metamodels (polynomial response surfaces, kriging, radial basis function) the scaling-law-based metamodels have the advantage of a light, compact form and good predictive accuracy over a wide range of the design variables (several orders of magnitude). The general regression process is first explained and then illustrated on different examples: a purely numerical test function, a limited angle electromagnetic actuator and a flexible mechanical hinge.

[1]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[2]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[3]  Jan Wikander,et al.  Optimal selection of motor and gearhead in mechatronic applications , 2006 .

[4]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[5]  Jean-Charles Maré,et al.  Modelling approach for the simulation-based preliminary design of power transmissions , 2011 .

[6]  Andrew A. Goldenberg,et al.  Design of Fast Steering Mirror systems for precision laser beams steering , 2008, 2008 International Workshop on Robotic and Sensors Environments.

[7]  Herman Van der Auweraer,et al.  Virtual engineering at work: the challenges for designing mechatronic products , 2012, Engineering with Computers.

[8]  F. Ordóñez,et al.  Scaling Laws From Statistical Data and Dimensional Analysis , 2005 .

[9]  Gerard Migliorero,et al.  High accuracy flexural hinge development , 2005 .

[10]  Klaus Zeman,et al.  Hierarchical design models in the mechatronic product development process of synchronous machines , 2010 .

[11]  David R. McKenzie,et al.  Transport properties of regular arrays of cylinders , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Oriol Gomis-Bellmunt,et al.  Linear electromagnetic actuator modeling for optimization of mechatronic and adaptronic systems , 2007 .

[13]  Oriol Gomis-Bellmunt,et al.  Hydraulic actuator modeling for optimization of mechatronic and adaptronic systems , 2008 .

[14]  Elías Cueto,et al.  On thea priori model reduction: Overview and recent developments , 2006 .

[15]  Sean N. Brennan,et al.  Scaling of hybrid-electric vehicle powertrain components for Hardware-in-the-loop simulation , 2009 .

[16]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[17]  François E. Cellier,et al.  Continuous system modeling , 1991 .

[18]  J Vinals,et al.  MTG SCAN MECHANISM PREDEVELOPMENT: DESIGN & PERFORMANCE , 2011 .

[19]  Daniel P. Raymer,et al.  Aircraft Design: A Conceptual Approach , 1989 .

[20]  R. Le Letty,et al.  Limited angel torque actuator for fine angular positioning , 2010 .

[21]  Jack P. C. Kleijnen,et al.  Kriging Metamodeling in Simulation: A Review , 2007, Eur. J. Oper. Res..

[22]  Jean-Charles Maré,et al.  Optimal preliminary design of electromechanical actuators , 2014 .

[23]  Ji-Young Lee,et al.  Design and experimental validation of doubly salient permanent magnet linear synchronous motor for precision position control , 2013 .

[24]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[25]  M Budinger,et al.  Estimation models for the preliminary design of electromechanical actuators , 2012 .

[26]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[27]  Brigitte Moench,et al.  Engineering Design A Systematic Approach , 2016 .

[28]  W. Marsden I and J , 2012 .

[29]  Xinwei Deng,et al.  Experimental design , 2012, WIREs Data Mining Knowl. Discov..

[30]  Donald F. Young,et al.  Basic principles and concepts of model analysis , 1971 .

[31]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[32]  Edward S. Taylor,et al.  Dimensional analysis for engineers , 1974 .

[33]  D. M. Auslander,et al.  What is mechatronics , 1996 .

[34]  Ching-Chih Tsai,et al.  Design and control of a brushless DC limited-angle torque motor with its application to fuel control of small-scale gas turbine engines , 2009 .

[35]  A. Suhaimi,et al.  Failure analysis of cable accessories using Finite Element Method Magnetics (FEMM) software , 2012, 2012 IEEE International Conference on Condition Monitoring and Diagnosis.

[36]  A. Ammar,et al.  PGD-Based Computational Vademecum for Efficient Design, Optimization and Control , 2013, Archives of Computational Methods in Engineering.

[37]  Frank Thielecke,et al.  Recent Advances Towards an Integrated and Optimized Design of High Lift Actuation Systems , 2009 .

[39]  Clint Steele,et al.  The use of dimensional analysis to augment design of experiments for optimization and robustification , 2006 .

[40]  Adam Fic,et al.  Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis , 2005 .

[41]  V. Vignaux,et al.  Theory & Methods: Simplifying Regression Models Using Dimensional Analysis , 1999 .

[42]  Glenn Murphy,et al.  Similitude in engineering , 1950 .

[43]  E. Hoang,et al.  Thermal Model With Winding Homogenization and FIT Discretization for Stator Slot , 2011, IEEE Transactions on Magnetics.

[44]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[45]  Satish K. Bapanapalli,et al.  Dimensionality Reduction Approach for Response Surface Approximations: Application to Thermal Design , 2009 .

[46]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[47]  Giovanni Miragliotta,et al.  Physics for Managers? The power of Dimensional Analysis in production systems design , 2011 .