Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors

We address the issue of accurate parametrization for the Abell-Tersoff empirical potential applied to tetrahedrally bonded semiconductor materials. Empirical potential methods for structural relaxation are widely used for group IV semiconductors while, with few notable exceptions, work on III-V materials has not been extensive. In the case of the Abell-Tersoff potential parametrizations exist only for III-As and III-N, and are designed to correctly predict only a limited number of cohesive and elastic properties. In this work we show how by fitting to a larger set of cohesive and elastic properties calculated from density functional theory, we are able to obtain parameters for III-As, III-N, III-P, and III-Sb zinc blende semiconductors, which can also correctly predict important nonlinear effects in the strain.

[1]  H. Wadley,et al.  Atomic assembly during GaN film growth : Molecular dynamics simulations , 2006 .

[2]  A. G. Cullis,et al.  Anisotropy of the electron energy levels in InxGa1−xAs/GaAs quantum dots with non uniform composition , 2005 .

[3]  K. Ramachandran,et al.  On the thermal expansion of CdS by experiment and simulation , 2006 .

[4]  Ranga Komanduri,et al.  Monte Carlo simulations of void-nucleated melting of silicon via modification in the Tersoff potential parameters , 2005 .

[5]  P. N. Keating,et al.  Theory of the Third-Order Elastic Constants of Diamond-Like Crystals , 1966 .

[6]  E. Halac,et al.  Static and dynamical properties of SiC polytypes , 2002 .

[7]  Motooka Model for amorphization processes in ion-implanted Si. , 1994, Physical review. B, Condensed matter.

[8]  F. Pollak Chapter 2 Effects of Homogeneous Strain on the Electronic and Vibrational Levels in Semiconductors , 1990 .

[9]  Masaharu Oshima,et al.  Molecular dynamics simulation of III–V compound semiconductor growth with MBE , 2000 .

[10]  Wang,et al.  Simulating diffusion on Si(001) 2 x 1 surfaces using a modified interatomic potential. , 1991, Physical review. B, Condensed matter.

[11]  Paulus,et al.  Cohesive energies of cubic III-V semiconductors. , 1996, Physical review. B, Condensed matter.

[12]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[13]  H. Wadley,et al.  Assessment of interatomic potentials for molecular dynamics simulations of GaAs deposition , 2005 .

[14]  Molecular dynamics study of structural and dynamical properties of amorphous Si-Ge alloys , 2003 .

[15]  Magnus Hedström,et al.  CHARACTERISTICS OF SUB-KEV ATOM-SI(111) SURFACE COLLISIONS , 1999 .

[16]  Max A. Migliorato,et al.  Composition and strain dependence of the piezoelectric coefficients in InxGa1-xAs alloys , 2006 .

[17]  Paolo Navaretti,et al.  Influence of composition on the piezoelectric effect and on the conduction band energy levels of inxGa1-xAs/GaAs quantum dots , 2004 .

[18]  M. Certier,et al.  Molecular Dynamics Study of Zinc-Blende GaN, AIN and InN , 2000 .

[19]  A. Curioni,et al.  Ab initio derived augmented Tersoff potential for silicon oxynitride compounds and their interfaces with silicon , 2006 .

[20]  Leonard Kleinman,et al.  Deformation Potentials in Silicon. I. Uniaxial Strain , 1962 .

[21]  C. Yoon,et al.  Molecular dynamic simulation of amorphous carbon and graphite interface , 1995 .

[22]  Ishimaru,et al.  Application of empirical interatomic potentials to liquid Si. , 1996, Physical review. B, Condensed matter.

[23]  H. Hwang,et al.  Structural and thermodynamic properties of GaN: a molecular dynamics simulation , 2003 .

[24]  Haydn N. G. Wadley,et al.  Analytic bond-order potential for predicting structural trends across the sp-valent elements , 2005 .

[25]  P. Milani,et al.  Simulated annealing and collision properties of carbon clusters , 1991 .

[26]  S. Q. Wang,et al.  First‐principles study on elastic properties and phase stability of III–V compounds , 2003 .

[27]  O. Schmidt,et al.  Atomic-scale pathway of the pyramid-to-dome transition during ge growth on Si(001). , 2004, Physical review letters.

[28]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[29]  Kai Nordlund,et al.  Molecular dynamics study of defect formation in GaN cascades , 2003 .

[30]  Adalberto Fazzio,et al.  STRUCTURAL PROPERTIES OF AMORPHOUS SILICON NITRIDE , 1998 .

[31]  Liangchi Zhang,et al.  Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation , 2000 .

[32]  V. Ivashchenko,et al.  The atomic pattern and electron structure of amorphous and microcrystalline sic , 2004 .

[33]  Kai Nordlund,et al.  Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs , 2002 .

[34]  S. Goumri‐Said,et al.  Prediction of structural and thermodynamic properties of zinc-blende AlN: molecular dynamics simulation , 2004 .

[35]  Lisa J. Porter,et al.  EMPIRICAL BOND-ORDER POTENTIAL DESCRIPTION OF THERMODYNAMIC PROPERTIES OF CRYSTALLINE SILICON , 1997 .

[36]  Angel Rubio,et al.  Simulating the thermal stability and phase changes of small carbon clusters and fullerenes , 1999 .

[37]  J. Kang,et al.  Molecular Dynamics Simulations of Single-wall GaN Nanotubes , 2004 .

[38]  Kai Nordlund,et al.  Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride , 2003 .

[39]  Kurt Scheerschmidt,et al.  EMPIRICAL BOND-ORDER POTENTIAL FOR SEMICONDUCTORS , 1998 .

[40]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[41]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[42]  Huaiwu Zhang,et al.  Energy and mechanical properties of single-walled carbon nanotubes predicted using the higher order Cauchy-Born rule , 2006 .

[43]  P. A. Marcos,et al.  Thermal behaviour of carbon clusters and small fullerenes , 1997 .

[44]  Alex Zunger,et al.  Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects , 2005 .

[45]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[46]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[47]  Max A. Migliorato,et al.  Atomistic simulation of strain relaxation in InxGa1-xAs/GaAs quantum dots with nonuniform composition , 2002 .

[48]  B. Rice,et al.  A bond-order potential for atomistic simulations in iron , 1999 .

[49]  D. Nguyen-Manh,et al.  AlloyedGe(Si)∕Si(001)islands: The composition profile and the shape transformation , 2005 .

[50]  Roger Smith,et al.  A semi-empirical many-body interatomic potential for modelling dynamical processes in gallium arsenide , 1992 .

[51]  J. Keinonen,et al.  Strain-induced Kirkendall mixing at semiconductor interfaces , 2000 .

[52]  Jasprit Singh,et al.  Physics of Semiconductors and Their Heterostructures , 1992 .

[53]  A. G. Cullis,et al.  Molecular dynamics simulation of (100)InGaAs/GaAs strained-layer relaxation processes , 1995 .

[54]  Conrad,et al.  TEM characterization of self‐organized CdSe/ZnSe quantum dots , 1999, Journal of microscopy.