The K-theory of certain C∗-algebras endowed with gauge actions
暂无分享,去创建一个
[1] B. Burgstaller. The uniqueness of Cuntz-Krieger type algebras , 2006 .
[2] M. Takesaki,et al. Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.
[3] N. Fowler. Discrete product systems of Hilbert bimodules , 1999, math/9904115.
[4] B. Burgstaller. THE K-THEORY OF SOME HIGHER RANK EXEL–LACA ALGEBRAS , 2008, Journal of the Australian Mathematical Society.
[5] Aidan Sims,et al. C*-algebras associated to higher-rank graphs , 2003 .
[6] B. Burgstaller. Some multidimensional Cuntz algebras , 2008 .
[7] N. Christopher Phillips. A Classification Theorem for Nuclear Purely Infinite Simple C -Algebras 1 , 1995 .
[8] I. Raeburn,et al. The Toeplitz algebra of a Hilbert bimodule , 1998, math/9806093.
[9] Aidan Sims,et al. The C*-algebras of finitely aligned higher-rank graphs , 2003 .
[10] I. Raeburn,et al. Cuntz-Krieger Algebras of Infinite Graphs and Matrices , 2003 .
[11] On the K-theory of higher rank graph C ∗ -algebras , 2004, math/0406458.
[12] J. Cuntz. K-theory for certain C-algebras , 1981 .
[13] G. Pedersen. C-Algebras and Their Automorphism Groups , 1979 .
[14] A. Sims,et al. A dual graph construction for higher-rank graphs, and K-theory for finite 2-graphs , 2004, math/0402126.