Inorganic islands on a highly stretchable polyimide substrate

For a flexible electronic device integrating inorganic materials on a polymer substrate, the polymer can deform substantially, but the inorganic materials usually fracture at small strains. This paper describes an approach to make such a device highly stretchable. A polyimide substrate is first coated with a thin layer of an elastomer, on top of which SiN x islands are fabricated. When the substrate is stretched to a large strain, the SiN x islands remain intact. Calculations confirm that the elastomer reduces the strain in the SiN x islands by orders of magnitude.

[1]  Yonggang Huang,et al.  Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper , 2009 .

[2]  Sigurd Wagner,et al.  Stiff subcircuit islands of diamondlike carbon for stretchable electronics , 2006 .

[3]  J. Hutchinson,et al.  Crack patterns in thin films , 2000 .

[4]  C. Cohen,et al.  Mechanical and swelling properties of PDMS interpenetrating polymer networks , 2006 .

[5]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[6]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Zhigang Suo,et al.  Delamination of stiff islands patterned on stretchable substrates , 2007 .

[8]  Y. Isono,et al.  Influence of Gas Flow Ratio in PE‐CVD Process on Mechanical Properties of Silicon Nitride Film , 2008 .

[9]  B. Kippelen Organic Photovoltaics , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[10]  Sigurd Wagner,et al.  Thin-film transistor circuits on large-area spherical surfaces , 2002 .

[11]  Andrea Scorzoni,et al.  Flexible tag microlab development: Gas sensors integration in RFID flexible tags for food logistic , 2007 .

[12]  Christoph J. Brabec,et al.  Organic photovoltaics: technology and market , 2004 .

[13]  Sigurd Wagner,et al.  Failure resistance of amorphous silicon transistors under extreme in-plane strain , 1999 .

[14]  John A. Rogers,et al.  Flexible Electronics: Ultrathin Silicon Circuits With Strain‐Isolation Layers and Mesh Layouts for High‐Performance Electronics on Fabric, Vinyl, Leather, and Paper (Adv. Mater. 36/2009) , 2009 .

[15]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Wagner,et al.  A woven inverter circuit for e-textile applications , 2004, IEEE Electron Device Letters.

[17]  O. Tabata,et al.  Mechanical property measurements of thin films using load-deflection of composite rectangular membranes , 1989 .

[18]  Michael Hack,et al.  Organic LED Pixel Array on a Dome , 2005, Proceedings of the IEEE.

[19]  P. Sommer-Larsen,et al.  Elastic Properties of Nonstoichiometric Reacted PDMS Networks , 2003 .

[20]  Sigurd Wagner,et al.  Fabricating Metal Interconnects for Circuits on a Spherical Dome , 2006 .

[21]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[22]  J. Rogers,et al.  A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates , 2006, Science.